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Main idea

We study techniques for deriving primal-dual methods, methods that
explicitly maintain and update both primal and dual variables.

Base splitting methods are limited to minimizing f(z) + g(x) or
f(z)+ g(x) + h(z). Primal-dual methods can solve a wider range of
problems and can exploit problem structures with a high level of freedom.
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Infimal postcomposition technique

Infimal postcomposition technique:

(i) Transform
minimize flx)+---
subject to Ax+---

into an equivalent form without constraints

minimize (A f)(z) +
using the infimal postcomposition A > f.

(ii) Apply base splittings.

Infimal postcomposition technique



Infimal postcomposition

Infimal postcomposition (IPC) of f by A:

To clarify, f: R® - RU {0}, A € R™*" and
A f: R™ — RU{+£oo}. Also called the image of f under A.

If fis CCP and R(AT) Nridom f* # (), then A f is CCP.
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IPC identity

Identity (i):
(A f)"(u) = f*(ATu)

Follows from

(48 1)) = sup {{w2) = int {70 + o) armar ()} |

z€eR™

= — inf {—(u7 z) + wignﬂ{n {f(z)+ 5{x|Ax_Z}(m)}}

zeR™
- zeRfiLI,lzfeRm {f(2) + 02| a0=2} (@) — (u, 2)}
= — inf {f(x) = (u, Ar)} = f*(ATu).

Identity (i) is why we encounter the infimal postcomposition.
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IPC identity

Identity (ii): If R(AT) Nridom f* # 0, then

x € arg;nin {f(z)+ (1/2)|| Az — ZIHQ}

z = Proxasr(y)
z=Ax =

and the argmin of the left-hand side exists. (The argmin, may not be
unique, but z = Az is unique.)

Proof in Exercise 3.1.
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Alternating direction method of multipliers (ADMM)

Consider the primal

minimize x) +
minimize, f(x) +9(y)

subject to Ax+ By =c
and the dual problem

maxiurlznize —f*(=ATu) — g*(—BTu) — cTu
ER™

generated by the Lagrangian
L(z,y,u) = f(z) + 9(y) + (u, Az + By — c).
Assume the regularity conditions
R(AT) Nridom f* # 0, R(BT) Nridomg* # 0.
We use the augmented Lagrangian

Ly(2.y,u) = f(z) + g(y) + (u, Az + By — ¢} + 2] Az + By - c|[*.



Alternating direction method of multipliers (ADMM)

Primal problem

S, S+ oW

subject to Ax + By = ¢,

is equivalent to

minimize  f(z) +9(y)
LeR"
z€RP, yeR?

subject to Ax =2, z+ By=c¢,
which is in turn equivalent to

minimize (A> f)(2)+ (B> g)e—2)

=f(2) =g(=)
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Alternating direction method of multipliers (ADMM)

The DRS FPI with respect to (1/2)I+ (1/2)R,-15Ra-155 is

2RH1/2 = Proxaflg(gk)
PR Proxa,lf(szH/2 - (k)

CRFL = ¢k g kD k12,

Define zF+1/2 = ¢ — ByFt1, 2kl = Azh+2 and ¢F = o~ 1uF + Azbt!
and use identity (ii) of page 7:

a
y"*1 € argmin {g(y) + (uF, AzF T 4 By —¢) + EHAkarl + By — CH2}
y

2**2 € argmin {f(m) + (W Az + Byt —¢) + %HA% + ByMtt — c||2}

uF Tt = uk 4 (A 4+ Byt —¢)
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Alternating direction method of multipliers (ADMM)

Reorder updates:

F 1 € argmin {f(x) + (uF, Az + By* —¢) + %HAI‘ + By — c||2}

x

. (6%
g+ € argmin {g(y) + (uF, At + By — o) + )| AaMH + By - ]}
Y

uF =P (AR £ Byt — )
Write updates more concisely:
2F T € argmin Ly, (z, y*, u®)
x

MLy, ub)

y** € argmin L, (¢
]
uFT = uP 4 (A2 + Byt — )
This is the alternating direction methods of multipliers (ADMM).

Infimal postcomposition technique 11



Convergence analysis: ADMM

We have completed the core of the convergence analysis, but
bookkeeping remains: check conditions and translate the convergence of
DRS into the convergence of ADMM.

DRS requires total duality between

minimize (At )() + (B> g)(c - 2)

and
maximize —f*(—ATu) — ¢*(—BTu) — cTu
ueR™

generated by the Lagrangian

L(z,u) = (A> f)(2) + (z,u) — g*(—=BTu) — cTu.

We need total duality with L, rather than L.
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Convergence analysis: ADMM

mlnlmlze f(x) +9(y) .
z€RP, yer maxgngglze —f*(—ATu) — g*(—=BTu) — cTu
u

subject to Az + By =c,
have solutions (z*,y*) and u* for which strong duality holds then
mineig%ize (A £)(2) + (B> g)(c — 2), maxein@\lize —f*(—ATw) — g*(=BTu) — cTu

have solutions z* = Ax* and u* for which strong duality holds.
e., [total duality original problem] = [total duality equivalent problem]

If total duality between the original primal and dual problems holds, the
regularity condition of page 8 holds, and « > 0, then ADMM is
well-defined, Az* — Az*, and By* — By*.

Infimal postcomposition technique
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Discussion: Regularity condition

Regularity condition of page 8 ensures (i) Ar> f and B > g are CCP and
(ii) minimizers defining the iterations exist.

Infimal postcomposition technique
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Dualization technique
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Dualization technique

Dualization technique: apply base splittings to the dual.

Certain primal problems with constraints have duals without constraints.

We have seen this technique with the method of multipliers.

Dualization technique
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Alternating direction method of multipliers (ADMM)

Alternate derivation of ADMM. Again consider

minimize  f(@) + 9w maximize - f*(-ATu) - (" (~BTu) + cTu)
f =g(u)

subject to  Ax+ By =, =f(u)

generated by
L(z,y,u) = f(z) + 9(y) + (u, Az + By — ¢).

Apply DRS to dual: FPI with T+ 1R, Raa5, is

P2 = Jaog (")
=g 8f~(2uk+1/2 — k)

[e3
¢k+1 — ,(/)k +Mk+1 _ Mk+1/2~
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Alternating direction method of multipliers (ADMM)

Using Jo(a()+¢) (1) = Jaa(u — at) and

x € argmin,, { f(z) — (u, Az) + ¢ Az|?}

U:PI‘OXaf*(AT~)(u) < 1):’11,70[A$7

write out resolvent evaluations:

~ . (6%

7 € argmin {g(y) + (V" — ac, By) + S| Byl13}
Y

uk+1/2 — ,l/)k: =+ a(B:&kJFl _ C)

i+ € argmin {f(z) + (v* + 20(BF*! — o), Av) + S| Az[3}
xr

Mk+1 — wk —l—aAjk'H +20{(ng+1 _ C)

wk‘—!—l — wk + a(Ajk—‘rl + ng—‘rl _ C)

Dualization technique
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Alternating direction method of multipliers (ADMM)

Eliminate /*t1/2 and p**! and reorganize:

~ . ~ « ~
7 € argmin {g(y) + (" — a AT, By) + 547" + By - |3}
Yy

1 € argmin {f(a:) + (F + a(BFFT! —¢), Az) + %HALL’ + BjFtt — cH%}
P = b+ a(AZF T 4 BF T — o)
Substitute u* = ¥ — a AT":

g1 € argmin {g(u) + (', By) + AT + By — cl3}

71 ¢ argmin {f(x) + (WPt Ag) + %HAz + Bttt — c||§}

uF Tt = uF + a(AZ* + By — o)
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Alternating direction method of multipliers (ADMM)

Reorder the updates and substitute 2**1 = #* and y* = §*:

2F*1 € argmin Ly, (z, v, u®)
x

k+1 k+1

Y € argmin L, (z
y

uk—f—l _ uk +Oé(AQ?k+1 +Byk+1 _ C)

Ly, u”)

If total duality, the regularity condition of page 8, and a > 0 hold, then
uF — u*, AzF — Az*, and Bylc — By*.

Convergence analysis: The previous analysis with IPC established
Az* — Az* and By* — By*. Since p/*t1/2 — u*, this implies

P* — u* 4+ aAx* and uF — u*r.

Dualization technique
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Remark: Multiple derivations

For some methods, we present multiple derivations. E.g. we derive PDHG
with variable metric PPM, with BCV, and from linearized ADMM.

Different derivations provide related but distinct interpretations.
They show intimate connection between various primal-dual methods.

Dualization technique 21



Alternating minimization algorithm (AMA)

Again consider

MMTES  J 90 maximize - f*(—ATw)— (0" (=BTw) +cTu)
subject to  Ax+ By =, =F(u) =g(u)

generated by the Lagrangian
L(z,y,u) = f(z) + g(y) + (u, Az + By — c).

Assume regularity conditions of page 8.

Further assume f is p-strongly convex, which implies
f*(=ATu) is W—smooth.

Dualization technique
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Alternating minimization algorithm (AMA)

Apply FBS to the dual. FPI with (I + adg)~'(I—aV /) is
WY =k oV f(u®)
W = (I + adg)~L(ubT1/?).
Using the identities re-stated in page 18 and

= 8(f*(AT))(y) PN HAS argminz {f(Z) - <y,AZ>}

u= Az
write out gradient and resolvent evaluations:
2" = argmin { f(z) + (u¥, Az)}
S VR :_ Akt
y* ! € angmin {g(y) + (w"*1/2 — ¢, By) + S| By|*|
y

Pt = P12 aBy*t — ac

Dualization technique
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Alternating minimization algorithm (AMA)

Simplify iteration:

k+1

2F*1 = argmin L(z, y*, u*)
x

y**1 € argmin L (z

Y
uF T = uF 4 (AP Byt — o).

Ry, k)

This is alternating minimization algorithm (AMA) or dual proximal

gradient.

If total duality, regularity conditions of page 8, u-strongly convex of f,
and a € (0, 24/ Amax(ATA)) hold, then u* — u*, 2% — z*, and
By* — By*.
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Convergence analysis: AMA

1. Since FBS converges, uf — u*.

2. [(z*,y*,u*) is a saddle point] = [z* = argmin, L(z,y*, u*)]
= [0 € df(z*) + ATu*] = [z* = Vf*(—ATuY)].

3. Since ¢t = Vf*(—ATu*) and Vf* continuous, u* — u* implies
ok — >

4. [u* — u*] = [uktt —ub — 0] = [Az* T + ByFtl — ¢ — 0]
= [By* — By*].

Dualization technique
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Variable metric technique

Variable metric technique
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Variable metric technique

Variable metric technique: use variable metric PPM or FBS with M
carefully chosen to cancels out certain terms.

Variable metric technique
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PDHG

Consider
L imize —f (—ATy) — o*
minimize f(z) + g(Ax), maximize f (—ATu) — g*(u)

generated by the Lagrangian

L(z,u) = f(z) + (u, Az) — g" (u).

Variable metric technique
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PDHG

Apply variable metric PPM to
|0 AT |z af(x)
orten = [0 B] ]+ (5

()1 a7
M= { A (1/6)1] ‘
M = 0if a,f >0 and afAn.x(ATA) < 1.

with

FPI with (M + dL)~'M is

)= ([ o))" [

which is equivalent to

uk+1

(/o) 0 Hx’““] [W(w’““)] [(1/a)mk—ATuk]

[ —24 (/B Og*(uft)| 7 |- Ak + (1/B)u”

Variable metric technique
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PDHG

Linear system is lower triangular, so compute 2+ first and then u*+1:

2 = Prox, s (zF — aATu")

uP Tl = Proxgy- (uf + BA(22F T — o))

This is primal-dual hybrid gradient (PDHG) or Chambolle—Pock.

If total duality holds, a > 0, 8 > 0, and aSAnmax(ATA) < 1, then
2k = 2* and uF — u*.

Variable metric technique
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Choice of metric

Although PDHG is derived from PPM, which is technically not an
operator splitting, PDHG is a splitting since f and g are split.

Choosing M to obtain a lower triangular system is crucial. For example,
FPI (2%t uF*+1) = (I + OL) (2%, u¥) is not useful; off-diagonal terms
couple ¢t and u**! requiring simultaneous computation. With no
splitting, one iteration is no easier than the whole problem.

Variable metric technique
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Condat—-Vu

Consider

minimize  f(z) + h(z) +g(Az) maximize —(f+h)*(-ATu) - g"(u),

where h is differentiable, generated by

L(z,u) = f(z) + h(z) + (u, Az) — g*(u).

Generalizes PDHG setup.

Variable metric technique 32



Condat—-Vu

Apply variable metric FBS to OL with M of page 29 with splitting

oL(a.u) =@+ ] o)

=H(z,u) =F(z,u)

FPI with (2*+1 uF+1) = (M 4+ F)~Y(M — H)(2*, u*) is

uk+1

—24 (py| T |og

Variable metric technique

[karl] _ <[(1/a)] 0 %[af})l {(1/04)_95;;&?1:«/;);11(%)

E
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Condat—-Vu

Again, compute z**1 first and then u*+1:

21 = Prox, s (2% — aATu? — aVh(2"))

uP Tl = Proxgy- (uf + BA(22F T — 2*))

This is Condat-Vi. If total duality holds, h is L-smooth, o > 0, 5 > 0,
and aL/2 + aBAmax(ATA) < 1, then 2% — 2* and u¥ — u*.

Variable metric technique
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Convergence analysis: Condat—Vii

Note M > 0 under the stated conditions. With basic computation,

Myl a(l —aBATA)™L  aBAT(I — aBAAT)!
- [aBA(I —aBATA)"Y BT — aBAAT)!

Let
1

6 = % (a - ,BAmax(ATA)) > 1.

(6 > 1 equivalent to &L /2 + afAmax(ATA) < 1.)

-1

1
0 <11 - BATA) <0 (1 - ﬁ)\max(ATA)> =2
« « L

Variable metric technique
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Convergence analysis: Condat—Vii

If I — @M ~1H is nonexpansive in || - |57, then I — M~ H is averaged in
I - |lar and Condat-Vii converges.

Nonexpansiveness of T — M ~tH in || - ||a:
I(T— M~ H)(z, u) — (I - OM~'H)(y, v)l[3;
= ll(@,u) = ()l
= 20((z,u) — (y,v), H(z,u) — H(y, v)) + 6%||H(z, u) — H(y, v) 3,
= [[(z,u) = (3, )13
—20(z — y, Vh(z) = Vh(y)) + 6| Vh(z) = VR)I2 (1—apara)-
< (@, u) = (v, 0) 13
= (20/L)V(x) = VRW)II* + 0| Vi(z) = VRW)|fa-17-gar a1
< (@, u) = (y, )13
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Example: Computational tomography (CT)

In computational tomography (CT), the medical device measures the
(discrete) Radon transform of a patient. The Radon transform is a linear
operator R € R™*™ and b € R™ is the measurement.

Usually m < n (more unknowns than measurements) and b ~ Rx*"¢ due
to measurement noise. Image is recovered with

minimize | Rz — b||? + A||Dz||,
TER™

where the optimization variable x € R™ represents the 2D image to
recover, D is the 2D finite difference operator, and A > 0.

RT is called backprojection. R and D are large matrices, but application
of them and their transposes are efficient.

Variable metric technique
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Example: Computational tomography (CT)

Problem is equivalent to

minimize 0(z) + g(Ax),

where

R 1
4= [(ﬁ/a)D} 9 2) = glly = bl* + (Aa/B)z]

for any a, 8 > 0. PDHG applied to this problem is

2F Tt =2k — (1/a)(aRTu® + BDT)

1
uFtlt = T a<Uk + aR(2z — 2F) — ab)

=TI na/graye) (VF + BD2a" ! —ak)).

Variable metric technique
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Gaussian elimination technique
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Gaussian elimination technique

Gaussian elimination technique: make inclusions upper or lower triangular
by multiplying by an invertible matrix.

Gaussian elimination technique
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Proximal method of multipliers

with function linearization

Consider primal problem
minimize  f(z) + h(z)
zeER™
subject to Ax =0,

where h is differentiable, generated by the Lagrangian

L(z,u) = f(z) + h(x) + (u, Az — b).

Split saddle subdifferential:

o= [2]- [ S8 P

=H(z,u) =G(z,u)

Gaussian elimination technique 41



Proximal method of multipliers

with function linearization
FPI with (I 4+ aG)~ (I — aH):
{ I aAT} [z’”l} N {aaf(xkﬂ)} N [xk - onh(xk)}

—aA I k! 0 uf — ab

Left-multiply with invertible matrix
I —aAT
0 1 ’
which corresponds to Gaussian elimination:
I+a?ATA 0] [P+ n Qdf (zk+1)
—aA I| [ukt? 0

5 [wk — aVh(z*) — aAT(u* — ab)

ukf — ab

Gaussian elimination technique
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Proximal method of multipliers

with function linearization

Compute zF*1 first and then compute u*+1:

1 = anguin { £(a) + (Vh(a*),2) + (o, Ao = 0) + 14z — o]

T
1
+ gello = 2412}
uF Tt = uF 4+ (AL —b)

This is proximal method of multipliers with function linearization.

If total duality holds, h is L-smooth, and a € (0,2/L), then k= a*
and uF — u*.

Gaussian elimination technique



PAPC/PDFP20

Consider primal problem

minimize h(x) + g(Ax)
zeR™

where h is differentiable, and the Lagrangian
L(z,u) = h(z) + (u, Az) — g*(u).

Apply variable metric FBS to 0L and use Gaussian elimination technique.

Split ) Vh) 0 A e 0
OL(z, u) [ 0 ] + [A 0 ] [u} + [ag*(u)}
=H(z,u) =G(z,u)
and use
M= {(1/0@)1 (1/5)IOaAAT] !

which satisfies M = 0 if aBAmax(ATA) < 1.
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PAPC/PDFP20

FPI with (M + G)™'(M — H) is described by

ﬂﬁ)l (1/ﬂ)IA—T aAAT] [i:i] i [69*(2’“1)} [((11//5))5:—_ zﬁﬁi?’f '

Left-multiply the system with the invertible matrix
I 0
aA T|’°
which corresponds to Gaussian elimination, and get
(1/a)I AT rhtl n 0
0 (1/6)1 uk+1 8g*(uk+1)

(1/a)z* — Vh(z*)
> {Amk — aVh(zF) + (1/8)ub — a AT AuF |
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PAPC/PDFP20

Compute u**! first and then compute z*+1:

uF Tt = Proxg,- (uk + BA(zF — aATUF — onh(mk)))

2R = 2F — qATUP T — a V()

This is proximal alternating predictor corrector (PAPC) or primal-dual
fixed point algorithm based on proximity operator (PDFP20).

If total duality holds, h is L-smooth, a > 0, 8 > 0, afAnax(ATA) < 1,
and a < 2/L, then ¥ — 2* and u* — u*.

Gaussian elimination technique
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Example: Isotonic regression

Isotonic constraint requires entries of regressor to be nondecreasing.

Isotonic regresion with the Huber loss is
minimize  {(Az — b)
rzeR™

subject to ;41 —2; >0 fori=1,...,n—1
where A € R™*"™ p € R™, and
m 2
_ o for |r| <1
) = Z;h(yl)’ h(r) = { 2lr|—1 for |r| > 1.

What method can we use?

Gaussian elimination technique
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Example: Isotonic regression

The problem is equivalent to

proximable proximable differentiable

—
mlznelmylze Z Or, (Tip1 — ;) —|—Z Op, (Ti41 — ;) +L(Az —b)
i=1,3,....,n—1 1=2,4,....n—2

We can use DYS.

Gaussian elimination technique



Example: Isotonic regression

The problem is equivalent to

minimize ((Az —b) + 01 (D7),
+

reER™
where
-1 1 0 0 0
0o -1 1 0
D= ER(H_UX".
0 0 0 -1 1

We can use PAPC.

Gaussian elimination technique
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Linearization technique

Linearization technique: use a proximal term to cancel out a
computationally inconvenient quadratic term.

In the update

1
P = angnin { £(@) + 1Az = o7+ gle = o1 |
TzER™ 2 2

If f is proximable, choose M = %I — aATA (with % > admax(ATA)):
1
F@)+5 1Az b2 + S lle —a*3,
1
= f(z) — a(Az,b) — 2T Mz + %xTATAx + §xTMx + constant

= f(z) + a(Azk — b, Az) —

1 1
—(zF ) + ﬁHxH2 + constant

ﬂ
:f(gc)—i—a( z* — b, Ax>+—ﬂ||x 2¥||? + constant

= f(z) ||w — (2" — apAT (A" — 1)) H2 + constant



Linearization technique

and we have

2t = Proxgy (ack — afAT(Az* — b))

Carefully choose M of the “proximal term” ||z — 2*||%, to cancel out the
quadratic term xT AT Az originating from || Az — b||%.

This is as if we linearized the quadratic term
%”Alﬁ —b||* ~ a(Az, Az® — b) + constant

and added (28)7!|lz — 2*||? to ensure convergence.

Linearization technique
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Linearized method of multipliers

Consider o
minimize f(z)
subject to Ax =b.
Let M > 0 and K = a~/2M~1/2, Re-parameterize with z = Ky:
N K
minimize  f(Ky)
subject to AKy=2b.

Proximal method of multipliers with re-parameterized problem:

. «o 1
41 = argnin { F(50) + (0 AR+ S1AKY 02+ ol =P
Yy

uF T = uP 4 a(AKy"T — b)

Linearization technique
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Linearized method of multipliers

Substitute back x = Ky:

1
o = angain { (o) + (o, As) + 1Az 017 + Gl B |
Pt =P 4 a(AxF T —b).
Let M = (1/8)I — aATA, where afSAnax(ATA) < 1 so that M > 0:
1
2F T = argmin {f(:c) + (u® + a(Azh —b), Az) + %Hx — zk||2}

uF Tt = uF 4+ (AL —b)

Linearization technique
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Linearized method of multipliers

Finally:

2" = Proxgy (z% — BAT(uF + a(A2* — 1))

= uk 4 a(AzMT — b)

This is linearized method of multipliers.

If total duality holds, a > 0, 8 > 0, and aSAnmax(ATA) < 1, then
b = 2* and uF — u*,

When Proxg; is easy to evaluate, but argmin, {f(z) + 3||Az — b||*} is
not, the linearized method of multipliers is useful.

Linearization technique
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BCV technique
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BCV technique

In the linearization technique, the proximal term (1/2)||x — z¥||3, must
come from somewhere.

The BCV technique creates proximal terms.

(BCV = Bertsekas, O'Connor, and Vandenberghe)

BCV technique
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PDHG

Consider
minimize  f(x) + g(Ax)
TER™
Use BCV technique to get equivalent problem

minimize  f(z) —1—6{0}(;%)—&—g(Agc—i—Ml/Qi)7

zER™, FER™

=f(z,3) =j(z,2)

for any M > 0.

BCV technique

58



PDHG
Consider DRS

_ 11 )
(Zk+1; Zk+1) = (2][ + 2Ra8§Raaf> (Zk, Zk).

The identity

T € argmin,, {h*(:zz) — (u, BTz) + %HBTSUHQ}
v=u—aBTx,

v = Proxoppy(u) <
becomes
Proxag(z, %) = (y,9)

> wemmnfyo-(f].[i7]) -3

y=z—aATu

ﬂzi—onfl/Qu

AT
]

)

under the regularity condition ridom g N R([A M'/2]) # 0.



PDHG

The FPI:

1
ZF1/2 — argmin {f(aj) + 7”1‘ _ Zk||2}
z 2a
j}k+1/2 =0

ukTl

= argmin {9*(U) — (A(2aMTV/2 — Ry — M2k )
o Toll2 1/2, 112

+ 5 (1ATull® + 1M 2]

Rl 9 kt1/2 ko ATy kL

‘,Ek:-‘rl _ _2/(.: . aMl/2uk+1

SR k)2 ATy R

SR — o /2 k1

BCV technique
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PDHG

Simplify further:
1
#F /2 = argmin {f(x) + %Hx — (zFY2 = aATuk)HQ}
. y _ a
uF*t1 = argmin {g (u) — (A(233k+1/2 — ¥ 1/2), u) + §||u — uk|\(2AAT+M)}
Linearize with M = B%I — AAT, with afBAnax(ATA) <1so M > 0:

k2 lz’roxoéf(ac"?*l/2 _ aATuk)
— Proxgg- (u* + BA(22"F1/2 — gF-1/2)),
If total duality, regularity condition ridom g N R([A M1/2]) £0,a>0,
8 >0, and afAmax(ATA) < 1 hold, then z*+1/2 — z*.
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Convergence analysis: PDHG

The Lagrangian
L(x, &, u,niu) = g(Az + M7V28) + (2, 1) + (2, ) — [* (1)

generates the stated equivalent primal problem and the dual problem

maximize  — (L;fp} > g*) (= =) — f*(n)

HER™ GER™

If the original primal-dual problems of page 28 has solutions z* and u*
for which strong duality holds, then the equivalent problems have

solutions (z*,0) and (—ATu*, —M'/?u*) for which strong duality holds.

l.e., [total duality original problem] = [total duality equivalent problem]

So DRS converges under the stated assumptions.

BCV technique
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PD30

Consider
minimize  f(x) + h(z) + g(Az)

zER™

Use BCV technique to get the equivalent problem

inimi Sron (& Az + MY?%)+ h
zemﬁg:?éﬁgn f(z) + 070y (Z) + g(Az + Z)+ h(z)

The DYS FPI
(Zk+1, 2k+1) = (]I — Jaaf + Jlaag(]Raaf — QVBJaaf))(zk, Zk)
with M = (Ba)~11 — AAT:

2" = Prox, (xk —aATu" — th(xk))

uM = Proxgg- (u” + BA (225 — 2% + aVh(2F) — aVA(z" ).

This is primal-dual three-operator splitting (PD30).



Condat-Vii vs. PD30

Condat-Vii and PD30 solve

minimize  f(z) + h(z) + g(Ax).
z€R™

Condat-Vii generalizes PDHG. PD30O generalizes PAPC and PDHG.
Condat-Vii:

2 = Prox, s (zF — aATu" — aVh(zF))

uF = Proxgy- (uF + BA(227 T — o))
PD30:

2! = Prox, (xk —aATub — th(mk))

uM ! = Proxg,- (uk + pA (2xk+1 —zF + aVh(z®) - th(ka)))
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Condat-Vii vs. PD30

Convergence criterion slightly differ.

Condat-Vii:
B Amax(ATA) + aL/2 < 1

PD30:
aBAmax(ATA) <1land aL/2< 1

Roughly speaking, PD30 can use stepsizes twice as large. This can lead
to PD30 being twice as fast.
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Proximal ADMM

Consider

minimize T)+
minimize, f(@) +9(y)

subject to Az + By =c.
Let M =0, N>=0, P=a Y2MY2 and Q = o~ 1/2N/2,

Use dual form of the BCV technique to get equivalent problem

minimize  f(x) 4+ g(y)

z€RP, yeR?
ZERY, JERP
A 0 B 0 c
subject to P 0 [ﬂ + (0 I [ﬂ =10
0 I Q ol 0
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Proximal ADMM

Apply ADMM:
- o -
2P € argmin {La(x, y® uf) + (af, Px) + || Px + yk||2}
TERP 2
1 = argmin { (5, 7) + 7 + Q|2
FERT
= —Qy" — (1/a)is
y**! € argmin {Lal@* ™y ub) + (@5, Qy) + 15 + Qul2}
yER
7+ = argmin { (@, ) + S P2 + g2
yERP

= —PzF — (1/0)dk

u uf + a(Az" T 4 Byt — ¢
it = af + (P 4+ g =0
a5t = a5 + o(F T + QYY) = aQyt T — o)
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67



Proximal ADMM

Simplify:

1
¥+ € argmin {La(x,yk,uk) + §||w — xk||?\4}

x

. 1
y* ! € argmin {La(m’““,y,uk) +5ly - y’“ll?v}
Yy

uk+1 — uk _’_a(Axk—H +Byk+1 _ C)

This is proximal ADMM.

If total duality, M >0, N = 0, (R(AT) + R(M)) Nridom f* # 0,
(R(BT) +R(N)) Nridom g* # (), and & > 0 hold, then u* — u*,
Az® — Az*, Ma* — Mx*, By* — By*, and Ny* — Ny*.
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Linearized ADMM

Consider

m|n|m|ze flx)+g(y)
z€RP yeR

subject to Az + By =c.
Proximal ADMM with M = %I— aATA and N = %I— aBTB:
" = argmin {f(x) (u*, Ax) + a(Azx, Az* + By* —¢) + —ﬂHx — Z‘k|2}

y**! = argmin {g(y) + (u*, By) + a(By, Az* T + By* —¢) + ally — y’“lz}

Yy
uk+1 _ ’U,k +O((A:Ek+1 +Byk+1 _ C)

BCV technique 69



Linearized ADMM

Simplify:

2"t = Proxgy (2% — BAT(W" + a(Az* + By* — ¢)))
y" ! = Prox,, (yk — BT (u* + a(Az"Tt + Byk — 0)))

uF T = uf 4 a(AT 4+ Byt —¢)

This is linearized ADMM.

If total duality holds, « >0, 8> 0, v > 0, a8 Anax(ATA) <1, and
Y Amax(BTB) < 1 then 2% — o*, y* — y*, and uF — u*.
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PDHG

Consider

 minimize  g(y) + f(2)
subjectto —Iy+ Az =0

which is equivalent to the problem of page 28.

Linearized ADMM:

Y"1 = Proxg, (y" + B(u” — a(y® — Az")))
1= Prox, s (2" — yAT(u" — a(y* T — Az")))

k+1 k BHL gkl

T =t — aly

Let 8 = 1/« and use Moreau identity:

y“‘1 = (l/a)uk + Ax® — (1/a) Proxqg- (uk + OzAxk)

=pk+1

il = Prox. ¢ (xk — WATuk'H)

uk+1 _ Mk+1 + OéA(Z‘]H_l _ xk)



PDHG

Recover PDHG:

pF Tt = Proxgg- (pF + aA(22F — 2%71))
zhtl = Prox, s (xk — 'yATukJrl)

If total duality, @ > 0, 7 > 0, ayAmax(ATA) < 1 hold, then uk =
and zF — 2*.
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Conclusion

We analyzed convergence of a wide range of splitting methods.

At a detailed level, the many techniques are not obvious and require
many lines of calculations. At a high level, the approach is to reduce all
methods to an FPI and apply Theorem 1.

Given an optimization problem, which method do we choose?

In practice, a given problem usually has at most a few methods that
apply conveniently. A good rule of thumb is to first consider methods
with a low per-iteration cost.
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