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Convex optimization via monotone operators

Monotone operator theory is an elegant and powerful tool.

We use this tool to provide a unified analysis of many classical and
modern first-order convex optimization methods.
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Optimization methods to cover

§2 Gradient descent, dual ascent, proximal point method, method of
multipliers, proximal method of multipliers, forward-backward
splitting, Douglas—Rachford splitting, Davis=Yin splitting, proximal
gradient method, iterative soft thresholding, consensus optimization,
forward-Douglas—Rachford, variable metric proximal point, variable
metric forward-backward splitting, backward-backward method.

§3 ADMM, alternating minimization algorithm (Tseng), PDHG
(Chambolle-Pock), Condat-Vii, proximal method of multipliers with
function lineraization, PAPC/PDFP2O, linearized method of
multipliers, PD30, proximal ADMM, linearized ADMM, DYS
3-block ADMM, doubly linearized method of multipliers.

§5 Coordinate gradient descent block-coordinate descent, coordinate
proximal-gradient descent, stochastic dual coordinate ascent,
MISO /finito, coordinate updates on conic programs.

86 ARock, asynchronous coordinate gradient descent, asynchronous
ADMM.
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Optimization methods to cover

§7 Stochastic forward-backward method, stochastic gradient descent,
stochastic proximal gradient method, stochastic proximal
simultaneous gradient method, stochastic Condat-Vi.

88 Function-linearized proximal ADMM, golden ratio ADMM,
doubly-linearized ADMM, partial linearization, near-circulant
splitting, Jacobi ADMM, 2-1-2 ADMM, Trip-ADMM, split Bregman
method, four-block 2-1-2-4-3-4 ADMM.

811 Distributed ADMM, decentralized ADMM, distributed gradient
descent, method of diffusion, adapt-then-combine, PG-EXTRA,
NIDS.

8§12 Nesterov accelerated gradient method, FISTA, accelerated proximal
point method.
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1st-order vs. 2nd-order methods

2nd-order methods:
» Use second-order derivatives or their approximations.
» Focus of 70s—-90s. Effective for smaller problems.

» Require fewer iterations to solve the optimization problem to high
accuracy, even up to machine precision.

1st-order methods:
» Can be described and analyzed with gradients and subgradients.
» Current focus. Effective for larger problems.

» Lower computational cost per iteration. For large problems, one
iteration of a 2nd-order method is infeasible, while 1st-order
methods can solve to acceptable accuracy.

1st-order methods are extremely simple; 2- or 3-line description.
Simpler methods are easy to try out and to parallelize.
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1st-order vs. 2nd-order methods

Two class of methods are usually not in competition.

» When a high-accuracy solution is needed, second-order methods
should be used. For small problems, use second-order methods, since
no reason to forgo the high accuracy.

» In large-scale problems, one should use first-order methods and
tolerate inaccuracy. Most engineering applications only require a few
digits of accuracy in its solution.
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Convergence and convergence rates

The total cost of a method is
(cost per iteration) x (number of iterations).

(cost per iteration): examining the computational cost of the individual
components of the method.
(number of iterations): analyzing the rate of convergence.

In optimization, methods are often compared with cost per iteration.
(We just made this very argument.) However, a method with a low cost
per iteration has the potential, not a guarantee, to be efficient.

Nevertheless, focusing on the cost per iteration is a useful simplification.
We focus on establishing convergence without paying much attention to
the rate of convergence.
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Limitations of monotone operator theory

We provide streamlined convergence proofs and only discuss results that
fit this approach. Such results are simple but often not the strongest.

Proofs based on monotone operator theory use monotonicity, rather than
convexity, as the key property. This line of analysis does not lead to
results involving function values. For example, the gradient method
P+l = 2F — oV f(2*) converges, under suitable assumptions, with rate
|V £(z*)]|?> < O(1/k) (proved with monotonicity) and

f(z®) — f(z*) < O(1/k) (proved with convexity).

Convex optimization theory goes beyond monotone operators, although
monotone operators do play a central role.
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Overloaded set notation

We overload many standard notation defined for points to sets:

Fora e R, x € R", A, B CR", M € R™*";

aA ={aala € A}
z+A={x+alac A}

MA={Ma|ae€ A}
A+B={a+blac A, be B}

The sum A + B is called the Minkowski sum.
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Schur complement

Consider

BT C

where A = AT ¢ R™*™ B c R™*" and C = CT € R"*™. When A is
invertible,

X — l:A B:| c R(m+n)x(m+n)’

C — BTAle c R7X™
is the Schur complement of A in X.

If A> 0, then [X - 0] & [C — BTA™'B > 0].
If A= 0, then [X = 0] < [C — BTA~'B = 0].

With Schur complement of C' in X:
If C = 0, then [X = 0] & [A— BC~!BT = 0].
If C =0, then [X = 0] & [A— BC™'BT = 0].

Use Schur complement to assess positive (semi)definiteness.
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Lipschitz continuity

T: R™ — R™ is L-Lipschitz (continuous) if
[T(z) = T(y)[| < Lllz -yl Va,y e R™

T is Lipschitz (continuous) if L-Lipschitz for some L € (0, 00).

» If T is Lipschitz, it is continuous.

» If Ty and Ty are Lq- and Lo-Lipschitz, then Ty o Ty is
L1 Lo-Lipschitz.

» If Ty and Ty are Lq- and La-Lipschitz, then a1 Ty + Ty is
(lo1| L1 + |aa| Lo)-Lipschitz.

Preliminaries

13



Interior

Closed ball of radius r centered at x:

B(a,r) ={y e R"[[ly — x| <r}

Interior of C C R™:
intC = {z € C|B(z,r) C C for some r > 0}
Closure of C C R™: c1C

Boundary of C' C R™: clC\int C
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Relative interior

Affine set: xg + V, where g € R™ and V' C R" is a subspace.

Affine hull of C C R™:
aft C = {01x1 + -+ Opap |21,..., 2, €C, 00+ -+ 0, =1,k >1}
Affine hull is the smallest affine set containing C.
Relative interior of C' C R™:
1iC ={z e C|B(z,r)Naff C C C for some r > 0}

ri C' of a nonempty convex set C' is nonempty.

Relative boundary of C' C R™: clC\riC
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Relative interior example

S={(z,y) eR*|z €[0.5,1], y = 4o — 3}.

1

riS—/
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Functions

Extended-valued functions map R"™ to the extended real line R U {£o0}.

(Some saddle functions have value £00.)

(Effective) domain of f:

dom f = {z € R"| f(z) < o0}

f is convex if
f0x 4+ (1—0)y) <O0f(x)+ (1 —0)f(y), Va,yedomf, 6e(0,1).

f is strictly convex if the inequality is strict when x # y. f is (strictly)
concave if —f is (strictly) convex. When f is convex, dom f is convex.

To clarify, we say f: R® - RU ﬁj:oo} is differentiable if f: R™ — R (so

9

[ is not extended-valued) and 7.-(z) exists for all z € R", i =1,...,n.
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CCP functions

fis CCP if closed, convex, and proper:
> fis proper if f(z) = —oo never and f(z) < oo somewhere.

» Proper f is closed if epigraph of f
epi f ={(z,0) eR" xR [ f(z) < a}

is closed.

Properties:

» Most convex functions of interest are closed and proper.

» [f is convex] < [epi f is convex]

» For proper f, [f closed] < [f is lower semi-continuous]

» [f CCP] < [epi f nonempty closed convex without a vertical line]
vertical line = {zo} x R.
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Closed convex function

CCP function example

7

Convex but not closed

The dashed line denotes the function value of co.
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CCP function example

Epigraph of the CCP —log is a nonempty closed convex set.
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Operations preserving CCP

If f and g are CCP functions, a > 0, and A is a matrix, then
> «f is CCP
> f+ g is CCP provided that 3 such that f(z) + g(x) < oo
» f(Ax) is CCP provided that 3z such that f(Az) < oo
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Indicator function

For S C R™, define the indicator function

5S(x):{o ifzesS

oo otherwise.

If S is convex, closed, and nonempty, then dg is CCP.
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Argmin

Set of minimizers of f:

)= int 1)}

argmin f = {x eR"
zER™

When f is CCP, argmin f is closed convex, possibly empty.

When f is strictly convex, argmin f has at most one point.
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Subgradient

g € R™ is a subgradient of convex f at x if
fy) =z f@)+{gy—x) VyeR™
The subdifferential of convex f at x is
Of(x) ={g eR"| f(y) = f(z) + (9,9 — x), Yy € R"},
i.e., Of (x) = {subgradients of f at x}.
> Of(x) is closed convex

» [Convex f is differentiable at z] < [0f(z) is a singleton]
» [z* € argmin f] & [0 € Of(z*)]
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Subdifferential example

The absolute value function is differentiable everywhere except at 0.

f(x) = |z| of (x)
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Subdifferential example

At z1, f is differentiable and 0f(z1) = {V f(z1)}.
At o, f is not differentiable and has many subgradients.

f(x2) + (g1, — x2),
g1 € Of(x2)

[ - f(as) + (ga,x — 22),
g2 € Of(x2)

1 o
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Normal cone operator

C C R"™ closed convex. Then

0 x¢C
85c(x):INc($)={ {y| (y,z—2) <0VzeC} zeC

is the normal cone operator.

We primarily use N¢ as notational shorthand for dé¢.



Subdifferentiability

Convex f is subdifferentiable at z if 9f(z) # 0.

When f is CCP,
» Of(z) =0 where x ¢ dom f
> Of(x) # 0 for any z € ridom f
» f may or may not be subdifferentiable on dom f\ridom f
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Non-subdifferentiable example

00 forx <0

f(x):{ —x forz>0

is not subdifferentiable at x = 0, although 0 € dom f and f is CCP.

f(=)
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Subgradient identities

Several standard identities for gradients also hold for subdifferentials
when regularity conditions hold:

> Jdaf =adf,ifa>0
> g(z) = f(Ax), g = ATOfA, if R(A) Nridom f # ()
> O(f+g)=0f + g, if dom f Nint dom g # ()

Without regularity conditions,

dg(x) 2 ATOf(Ax),  O(f +g)(x) 2 Of(x) + dg(x)
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Regularity conditions

Say we have “P = Q".

Then, if P “usually” holds then Q "usually” holds, and we say P is a
regularity condition, since P is satisfied in the usual “regular” case.

Examples:
» [dom f Nintdomyg # 0] = [0(f + g) = Of + Jg].
» [Slater's constraint qualification] = [strong duality].
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Conjugate function

Conjugate function of f:

[ (y) = sup {{y,z) — f(2)}

TeR"”

Properties: when f is CCP
> f*is CCP and f** = f
> (Vf)~! =V f* when f and f* are differentiable
» (0f)~1 = df* in general (more on this next section)
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Strong convexity

CCP f is p-strongly convex if:
> f(z) — (u/2)||z]|? is convex.
> (Df(x) = 0f(y),z —y) > pllz — yl|* for all z,y.
» V2f(x) = ul for all z if f is twice continuously differentiable.

These conditions are equivalent.

If fis pu-strongly convex and g is convex, then f + g is u-strongly
convex. To clarify, strong convexity does not imply differentiability.
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L-smooth function

CCP f is L-smooth if:
» f(z) — (L/2)||z||? is concave.
> f is differentiable and
(V@) = V), —y) = A/L)IVf(x) = Vf(y)|?* forall z,y.
> f is differentiable and V f is L-Lipschitz.
» V2f(x) = LI for all z if f is twice continuously differentiable.

These conditions are equivalent.

“L-smoothness”, which implies once-continuous differentiability, is
somewhat non-standard; “smoothness”’ often means infinite
differentiability in other fields of mathematics.
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Strong convexity and smoothness

Informally speaking, p-strongly convex functions have upward curvature
of at least p and L-smooth convex functions have upward curvature of
no more than L. We can think of nondifferentiable points to be points

with infinite curvature.

Strongly convex but not smooth  Smooth but not strongly convex.
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Strong convexity and smoothness

If f is p-strongly convex and L-smooth, then p < L since

pllz —ylI> < (Vf(z) = Vi), = —y)
<|IVf(@) = Viwllz -yl
< Lz — yl|*.

Strong convexity and smoothness are dual properties:
if f CCP, [f is u-strongly convex] < [f* is (1/u)-smooth]
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Convex-concave saddle function and saddle point

Let L: R” x R™ — R U {£o0}. We say L(z,u) is convex-concave if L
is convex in  when w is fixed and concave in u when z is fixed.

(x*,u*) is a saddle point of L if

L(z*,u) < L(z*,u*) < L(z,u") Ve eR" ueR™.

Preliminaries

37



Duality from saddle functions

Primal problem generated by L:

minimize su m L(x,u
TER™ puE[R ( ) )

Dual problem generated by L:

maximize inf,epn L(z,u)
u€eR™

Trick is to find L that generates the primal problem of interest.
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Duality example: linearly constrained minimization

L(z,u) = f(z) + (u, Az — b)
generates the primal problem
mimneinge f(x)
subject to Az =1b
and dual problem
maximize —f*(—ATu) — bTu.

ueRm

If {z| Az = b} Nint dom f # () holds, then d* = p*.
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Duality example: Fenchel-Rockafellar dual

L(z,u) = f(z) + (u, Az) — g"(u)
generates the primal problem
minimize f(z) + g(Az)

and dual problem

et ATy s
maximize f (=ATu) — g*(u).

If Adom f Nintdom g # () holds, then d* = p*.
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Weak and strong duality

Weak duality: d* < p*. Always holds.

Proof. For any z,u we have
inf L(z,u) < L(z,u)

sup inf L(z, u) < sup L(z, u)

d* = supinf L(z,u) < infsup L(z,u) = p*.

u T Ty

Strong duality: d* = p*. Holds often but not always in convex
optimization. Regularity conditions that ensure strong duality are called
constraint qualifications.
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Total duality

Total duality: a primal solution exists, a dual solution exists, and strong
duality holds.

[Total duality] < [L has a saddle point]

When total duality holds, solving the primal and dual optimization
problems is equivalent to finding a saddle point of L.

We will later see that total duality is the regularity condition that ensures
primal-dual methods converge.
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Total duality

Proof. Assume L has a saddle point (z*,u*). Then
L(z*,u*) = ir;f L(x,u*)
< sup ir;fL(gc, u) =d*
< ir;f sup L(z,u) = p*

< supL(a*,u) = L(a*, u*),
and equality holds throughout.

inf, sup,, L(z,u) = sup,, L(z*,u), so z* is a primal solution.
inf, L(z,u*) = sup,, inf, L(x,u), so u* is a dual solution.
d* = sup,, inf, L(z,u) = inf, sup, L(x,u) = p*, so strong duality holds.
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Total duality

Assume total duality and z*, u* are primal, dual solutions. Then

inf L(z,u*) = supinf L(z,u) = d*

= infsupL(z,u) =p

= sup L(z*, u).
Since
L(z*,u*) <supL(z*,u) = inf L(z,u*) < L(z*,u*)
equality holds throughout and we conclude

sup L(z*,u) = L(z*,u*) = inf L(z, u*),

u x
i.e., (z*,u*) is a saddle point.
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Slater’s constraint qualification

Constraint qualifications are regularity conditions ensuring strong duality.

Consider the primal problem

mini%'nize fo(x)
zER™
subject to  fi(z) <0 fori=1,...,m
Ax =b
generated by the Lagrangian
L(z,\v) = —I—Z)\ fi(z) + (v, Az — b) — drrp ().

Slater's constraint qualification: if there exists an x such that

xEriﬂdomfi, filx) <0 fori=1,...,m, Az =0b
i=0

then d* = p*, and if furthermore d* = p* > —o0o, then a dual sol. exists.



Proximal operator

Proximal operator with respect to af:

1
Prosa (1) = anguin {a(0) + e —?}
reER™

for CCP f and a > 0. When o = 1, write Prox;.
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Proximal operator

If fis CCP, then Prox.y is well defined, i.e., argmin uniquely exists.

Proof. Let zyp € ridom f, g € 0f(x0). Then f(z) > f(zo) + (9,2 — x0)
and

1 1
af(@)+ 5w —yl* = af(z0) + alg,x = z0) + S llw —y[I*

=f() =h(z)

Since lim”xH_wo h(zx) = oo and f > h, we have 1im| - 00 f(m) = 0.
Therefore, f(z*) — inf, f( ) implies 2%, 2, ... is bounded. For any
convergent subsequence x ki — &, lower semi-continuity of f implies
f( ) < inf, f(x). Thus f(Z) = inf, f(z), i.e., a solution exists. Finally,

f is strictly convex, so the minimizer is unique. O
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Proximal operator example: Soft-thresholding

Soft-thresholding operator S(z; k) = Prox,.|, () has closed-form

T, — Kk fork <uwm;
(S(z;k))i=4q 0O for —k<z; <k
z; +k forx; < —k

fori=1,...,n.

S(x; k)

vai
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Proximal operator example: Projection

Projection onto nonempty closed convex C' C R™:

¢ (y) = argmin [|lz — y|
zeC

Since Prox,s., = Proxs., = Il for any a > 0, proximal operators
generalize projections.
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Proximable functions

Evaluating Prox, ¢ is an optimization problem itself. However, many
interesting convex f has a closed-form solution for Prox,s so it is a
useful subroutine.

f is proximable (informal definition) if Prox,s is computationally

efficient to evaluate. Catalog of proximable functions in several papers.

We decompose an optimization problem into smaller, simpler
differentiable or proximable functions and operate on them separately.
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