
Introduction and Preliminaries

Ernest K. Ryu

Mathematical and Numerical Optimization
Fall 2021

Outline

Introduction

Preliminaries

Introduction 2

Convex optimization via monotone operators

Monotone operator theory is an elegant and powerful tool.

We use this tool to provide a unified analysis of many classical and
modern first-order convex optimization methods.

Introduction 3

Optimization methods to cover

§2 Gradient descent, dual ascent, proximal point method, method of
multipliers, proximal method of multipliers, forward-backward
splitting, Douglas–Rachford splitting, Davis–Yin splitting, proximal
gradient method, iterative soft thresholding, consensus optimization,
forward-Douglas–Rachford, variable metric proximal point, variable
metric forward-backward splitting, backward-backward method.

§3 ADMM, alternating minimization algorithm (Tseng), PDHG
(Chambolle–Pock), Condat–Vũ, proximal method of multipliers with
function lineraization, PAPC/PDFP2O, linearized method of
multipliers, PD3O, proximal ADMM, linearized ADMM, DYS
3-block ADMM, doubly linearized method of multipliers.

§5 Coordinate gradient descent block-coordinate descent, coordinate
proximal-gradient descent, stochastic dual coordinate ascent,
MISO/finito, coordinate updates on conic programs.

§6 ARock, asynchronous coordinate gradient descent, asynchronous
ADMM.

Introduction 4

Optimization methods to cover

§7 Stochastic forward-backward method, stochastic gradient descent,
stochastic proximal gradient method, stochastic proximal
simultaneous gradient method, stochastic Condat–Vũ.

§8 Function-linearized proximal ADMM, golden ratio ADMM,
doubly-linearized ADMM, partial linearization, near-circulant
splitting, Jacobi ADMM, 2-1-2 ADMM, Trip-ADMM, split Bregman
method, four-block 2-1-2-4-3-4 ADMM.

§11 Distributed ADMM, decentralized ADMM, distributed gradient
descent, method of diffusion, adapt-then-combine, PG-EXTRA,
NIDS.

§12 Nesterov accelerated gradient method, FISTA, accelerated proximal
point method.

Introduction 5

1st-order vs. 2nd-order methods

2nd-order methods:

I Use second-order derivatives or their approximations.

I Focus of 70s–90s. Effective for smaller problems.

I Require fewer iterations to solve the optimization problem to high
accuracy, even up to machine precision.

1st-order methods:

I Can be described and analyzed with gradients and subgradients.

I Current focus. Effective for larger problems.

I Lower computational cost per iteration. For large problems, one
iteration of a 2nd-order method is infeasible, while 1st-order
methods can solve to acceptable accuracy.

I 1st-order methods are extremely simple; 2- or 3-line description.
Simpler methods are easy to try out and to parallelize.

Introduction 6

1st-order vs. 2nd-order methods

Two class of methods are usually not in competition.

I When a high-accuracy solution is needed, second-order methods
should be used. For small problems, use second-order methods, since
no reason to forgo the high accuracy.

I In large-scale problems, one should use first-order methods and
tolerate inaccuracy. Most engineering applications only require a few
digits of accuracy in its solution.

Introduction 7

Convergence and convergence rates

The total cost of a method is

(cost per iteration)× (number of iterations).

(cost per iteration): examining the computational cost of the individual
components of the method.
(number of iterations): analyzing the rate of convergence.

In optimization, methods are often compared with cost per iteration.
(We just made this very argument.) However, a method with a low cost
per iteration has the potential, not a guarantee, to be efficient.

Nevertheless, focusing on the cost per iteration is a useful simplification.
We focus on establishing convergence without paying much attention to
the rate of convergence.

Introduction 8

Limitations of monotone operator theory

We provide streamlined convergence proofs and only discuss results that
fit this approach. Such results are simple but often not the strongest.

Proofs based on monotone operator theory use monotonicity, rather than
convexity, as the key property. This line of analysis does not lead to
results involving function values. For example, the gradient method
xk+1 = xk − α∇f(xk) converges, under suitable assumptions, with rate
‖∇f(xk)‖2 ≤ O(1/k) (proved with monotonicity) and
f(xk)− f(x?) ≤ O(1/k) (proved with convexity).

Convex optimization theory goes beyond monotone operators, although
monotone operators do play a central role.

Introduction 9

Outline

Introduction

Preliminaries

Preliminaries 10

Overloaded set notation

We overload many standard notation defined for points to sets:
For α ∈ R, x ∈ Rn, A,B ⊆ Rn, M ∈ Rm×n:

αA = {αa | a ∈ A}
x+A = {x+ a | a ∈ A}
MA = {Ma | a ∈ A}

A+B = {a+ b | a ∈ A, b ∈ B}

The sum A+B is called the Minkowski sum.

Preliminaries 11

Schur complement

Consider

X =

[
A B
Bᵀ C

]
∈ R(m+n)×(m+n),

where A = Aᵀ ∈ Rm×m, B ∈ Rm×n, and C = Cᵀ ∈ Rn×n. When A is
invertible,

C −BᵀA−1B ∈ Rn×n

is the Schur complement of A in X.

If A � 0, then [X � 0] ⇔ [C −BᵀA−1B � 0].
If A � 0, then [X � 0] ⇔ [C −BᵀA−1B � 0].

With Schur complement of C in X:
If C � 0, then [X � 0] ⇔ [A−BC−1Bᵀ � 0].
If C � 0, then [X � 0] ⇔ [A−BC−1Bᵀ � 0].

Use Schur complement to assess positive (semi)definiteness.
Preliminaries 12

Lipschitz continuity

� : Rn → Rm is L-Lipschitz (continuous) if

‖�(x)− �(y)‖ ≤ L‖x− y‖ ∀x, y ∈ Rn.

� is Lipschitz (continuous) if L-Lipschitz for some L ∈ (0,∞).

I If � is Lipschitz, it is continuous.

I If �1 and �2 are L1- and L2-Lipschitz, then �1 ◦ �2 is
L1L2-Lipschitz.

I If �1 and �2 are L1- and L2-Lipschitz, then α1�1 + α2�2 is
(|α1|L1 + |α2|L2)-Lipschitz.

Preliminaries 13

Interior

Closed ball of radius r centered at x:

B(x, r) = {y ∈ Rn | ‖y − x‖ ≤ r}

Interior of C ⊆ Rn:

intC = {x ∈ C |B(x, r) ⊆ C for some r > 0}

Closure of C ⊆ Rn: clC

Boundary of C ⊆ Rn: clC\intC

Preliminaries 14

Relative interior

Affine set: x0 + V , where x0 ∈ Rn and V ⊆ Rn is a subspace.

Affine hull of C ⊆ Rn:

aff C = {θ1x1 + · · ·+ θkxk |x1, . . . , xk ∈ C, θ1 + · · ·+ θk = 1, k ≥ 1}

Affine hull is the smallest affine set containing C.

Relative interior of C ⊂ Rn:

riC = {x ∈ C |B(x, r) ∩ aff C ⊆ C for some r > 0}

riC of a nonempty convex set C is nonempty.

Relative boundary of C ⊆ Rn: clC\riC

Preliminaries 15

Relative interior example

S =
{

(x, y) ∈ R2 |x ∈ [0.5, 1], y = 4x− 3
}
.

S = riS =

Preliminaries 16

Functions

Extended-valued functions map Rn to the extended real line R ∪ {±∞}.
(Some saddle functions have value ±∞.)

(Effective) domain of f :

dom f = {x ∈ Rn | f(x) <∞}

f is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x, y ∈ dom f, θ ∈ (0, 1).

f is strictly convex if the inequality is strict when x 6= y. f is (strictly)
concave if −f is (strictly) convex. When f is convex, dom f is convex.

To clarify, we say f : Rn → R ∪ {±∞} is differentiable if f : Rn → R (so
f is not extended-valued) and ∂f

∂xi
(x) exists for all x ∈ Rn, i = 1, . . . , n.

Preliminaries 17

CCP functions

f is CCP if closed, convex, and proper:

I f is proper if f(x) = −∞ never and f(x) <∞ somewhere.

I Proper f is closed if epigraph of f

epi f = {(x, α) ∈ Rn ×R | f(x) ≤ α}

is closed.

Properties:

I Most convex functions of interest are closed and proper.

I [f is convex] ⇔ [epi f is convex]

I For proper f , [f closed] ⇔ [f is lower semi-continuous]

I [f CCP] ⇔ [epi f nonempty closed convex without a vertical line]

vertical line = {x0} ×R.

Preliminaries 18

CCP function example

Closed convex function Convex but not closed

The dashed line denotes the function value of ∞.

Preliminaries 19

CCP function example

Epigraph of the CCP − log is a nonempty closed convex set.

epi (− log)

Preliminaries 20

Operations preserving CCP

If f and g are CCP functions, α > 0, and A is a matrix, then

I αf is CCP

I f + g is CCP provided that ∃x such that f(x) + g(x) <∞
I f(Ax) is CCP provided that ∃x such that f(Ax) <∞

Preliminaries 21

Indicator function

For S ⊆ Rn, define the indicator function

δS(x) =

{
0 if x ∈ S
∞ otherwise.

If S is convex, closed, and nonempty, then δS is CCP.

Preliminaries 22

Argmin

Set of minimizers of f :

argmin f =

{
x ∈ Rn

∣∣∣∣ f(x) = inf
z∈Rn

f(z)

}

When f is CCP, argmin f is closed convex, possibly empty.

When f is strictly convex, argmin f has at most one point.

Preliminaries 23

Subgradient

g ∈ Rn is a subgradient of convex f at x if

f(y) ≥ f(x) + 〈g, y − x〉 ∀ y ∈ Rn.

The subdifferential of convex f at x is

∂f(x) = {g ∈ Rn | f(y) ≥ f(x) + 〈g, y − x〉, ∀ y ∈ Rn},

i.e., ∂f(x) = {subgradients of f at x}.

I ∂f(x) is closed convex

I [Convex f is differentiable at x] ⇔ [∂f(x) is a singleton]

I [x? ∈ argmin f] ⇔ [0 ∈ ∂f(x?)]

Preliminaries 24

Subdifferential example

The absolute value function is differentiable everywhere except at 0.

f(x) = |x| ∂f(x)

Preliminaries 25

Subdifferential example

At x1, f is differentiable and ∂f(x1) = {∇f(x1)}.
At x2, f is not differentiable and has many subgradients.

x1 x2

f(x1) + 〈∇f(x1), x− x1〉

f(x2) + 〈g1, x − x2〉,
g1 ∈ ∂f(x2)

f(x2) + 〈g2, x − x2〉,
g2 ∈ ∂f(x2)

Preliminaries 26

Normal cone operator

C ⊆ Rn closed convex. Then

∂δC(x) = ℕC(x) =

{
∅ x 6∈ C
{y | 〈y, z − x〉 ≤ 0 ∀ z ∈ C} x ∈ C

is the normal cone operator.

C

x2

ℕC(x2)
x3

ℕC(x3)

x1

ℕC(x1)

We primarily use ℕC as notational shorthand for ∂δC .

Subdifferentiability

Convex f is subdifferentiable at x if ∂f(x) 6= ∅.

When f is CCP,

I ∂f(x) = ∅ where x /∈ dom f

I ∂f(x) 6= ∅ for any x ∈ ri dom f

I f may or may not be subdifferentiable on dom f\ri dom f

Preliminaries 28

Non-subdifferentiable example

f(x) =

{
−
√
x for x ≥ 0

∞ for x < 0

is not subdifferentiable at x = 0, although 0 ∈ dom f and f is CCP.

f(x)

Preliminaries 29

Subgradient identities

Several standard identities for gradients also hold for subdifferentials
when regularity conditions hold:

I ∂αf = α∂f , if α > 0

I g(x) = f(Ax), ∂g = Aᵀ∂fA, if R(A) ∩ ri dom f 6= ∅
I ∂(f + g) = ∂f + ∂g, if dom f ∩ int dom g 6= ∅

Without regularity conditions,

∂g(x) ⊇ Aᵀ∂f(Ax), ∂(f + g)(x) ⊇ ∂f(x) + ∂g(x)

Preliminaries 30

Regularity conditions

Say we have “P ⇒ Q”.

Then, if P “usually” holds then Q “usually” holds, and we say P is a
regularity condition, since P is satisfied in the usual “regular” case.

Examples:

I [dom f ∩ int dom g 6= ∅] ⇒ [∂(f + g) = ∂f + ∂g].

I [Slater’s constraint qualification] ⇒ [strong duality].

Preliminaries 31

Conjugate function

Conjugate function of f :

f∗(y) = sup
x∈Rn

{〈y, x〉 − f(x)}

Properties: when f is CCP

I f∗ is CCP and f∗∗ = f

I (∇f)−1 = ∇f∗ when f and f∗ are differentiable

I (∂f)−1 = ∂f∗ in general (more on this next section)

Preliminaries 32

Strong convexity

CCP f is µ-strongly convex if:

I f(x)− (µ/2)‖x‖2 is convex.

I 〈∂f(x)− ∂f(y), x− y〉 ≥ µ‖x− y‖2 for all x, y.

I ∇2f(x) � µI for all x if f is twice continuously differentiable.

These conditions are equivalent.

If f is µ-strongly convex and g is convex, then f + g is µ-strongly
convex. To clarify, strong convexity does not imply differentiability.

Preliminaries 33

L-smooth function

CCP f is L-smooth if:

I f(x)− (L/2)‖x‖2 is concave.

I f is differentiable and
〈∇f(x)−∇f(y), x− y〉 ≥ (1/L)‖∇f(x)−∇f(y)‖2 for all x, y.

I f is differentiable and ∇f is L-Lipschitz.

I ∇2f(x) � LI for all x if f is twice continuously differentiable.

These conditions are equivalent.

“L-smoothness”, which implies once-continuous differentiability, is
somewhat non-standard; “smoothness” often means infinite
differentiability in other fields of mathematics.

Preliminaries 34

Strong convexity and smoothness

Informally speaking, µ-strongly convex functions have upward curvature
of at least µ and L-smooth convex functions have upward curvature of
no more than L. We can think of nondifferentiable points to be points
with infinite curvature.

Strongly convex but not smooth Smooth but not strongly convex.

Preliminaries 35

Strong convexity and smoothness

If f is µ-strongly convex and L-smooth, then µ ≤ L since

µ‖x− y‖2 ≤ 〈∇f(x)−∇f(y), x− y〉
≤ ‖∇f(x)−∇f(y)‖‖x− y‖
≤ L‖x− y‖2.

Strong convexity and smoothness are dual properties:
if f CCP, [f is µ-strongly convex] ⇔ [f∗ is (1/µ)-smooth]

Preliminaries 36

Convex-concave saddle function and saddle point

Let L : Rn ×Rm → R ∪ {±∞}. We say L(x, u) is convex-concave if L
is convex in x when u is fixed and concave in u when x is fixed.

(x?, u?) is a saddle point of L if

L(x?, u) ≤ L(x?, u?) ≤ L(x, u?) ∀x ∈ Rn, u ∈ Rm.

Preliminaries 37

Duality from saddle functions

Primal problem generated by L:

minimize
x∈Rn

supu∈Rm L(x, u)

Dual problem generated by L:

maximize
u∈Rm

infx∈Rn L(x, u)

Trick is to find L that generates the primal problem of interest.

Preliminaries 38

Duality example: linearly constrained minimization

L(x, u) = f(x) + 〈u,Ax− b〉

generates the primal problem

minimize
x∈Rn

f(x)

subject to Ax = b

and dual problem

maximize
u∈Rm

−f∗(−Aᵀu)− bᵀu.

If {x |Ax = b} ∩ int dom f 6= ∅ holds, then d? = p?.

Preliminaries 39

Duality example: Fenchel–Rockafellar dual

L(x, u) = f(x) + 〈u,Ax〉 − g∗(u)

generates the primal problem

minimize
x∈Rn

f(x) + g(Ax)

and dual problem

maximize
u∈Rm

−f∗(−Aᵀu)− g∗(u).

If Adom f ∩ int dom g 6= ∅ holds, then d? = p?.

Preliminaries 40

Weak and strong duality

Weak duality: d? ≤ p?. Always holds.

Proof. For any x, u we have

inf
x

L(x, u) ≤ L(x, u)

sup
u

inf
x

L(x, u) ≤ sup
u

L(x, u)

d? = sup
u

inf
x

L(x, u) ≤ inf
x

sup
u

L(x, u) = p?.

Strong duality: d? = p?. Holds often but not always in convex
optimization. Regularity conditions that ensure strong duality are called
constraint qualifications.

Preliminaries 41

Total duality

Total duality: a primal solution exists, a dual solution exists, and strong
duality holds.

[Total duality] ⇔ [L has a saddle point]

When total duality holds, solving the primal and dual optimization
problems is equivalent to finding a saddle point of L.

We will later see that total duality is the regularity condition that ensures
primal-dual methods converge.

Preliminaries 42

Total duality

Proof. Assume L has a saddle point (x?, u?). Then

L(x?, u?) = inf
x

L(x, u?)

≤ sup
u

inf
x

L(x, u) = d?

≤ inf
x

sup
u

L(x, u) = p?

≤ sup
u

L(x?, u) = L(x?, u?),

and equality holds throughout.

infx supu L(x, u) = supu L(x?, u), so x? is a primal solution.
infx L(x, u?) = supu infx L(x, u), so u? is a dual solution.
d? = supu infx L(x, u) = infx supu L(x, u) = p?, so strong duality holds.

Preliminaries 43

Total duality

Assume total duality and x?, u? are primal, dual solutions. Then

inf
x

L(x, u?) = sup
u

inf
x

L(x, u) = d?

= inf
x

sup
u

L(x, u) = p?

= sup
u

L(x?, u).

Since
L(x?, u?) ≤ sup

u
L(x?, u) = inf

x
L(x, u?) ≤ L(x?, u?)

equality holds throughout and we conclude

sup
u

L(x?, u) = L(x?, u?) = inf
x

L(x, u?),

i.e., (x?, u?) is a saddle point.

Preliminaries 44

Slater’s constraint qualification

Constraint qualifications are regularity conditions ensuring strong duality.

Consider the primal problem

minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0 for i = 1, . . . ,m
Ax = b

generated by the Lagrangian

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) + 〈ν,Ax− b〉 − δRm
+

(λ).

Slater’s constraint qualification: if there exists an x such that

x ∈ ri

m⋂
i=0

dom fi, fi(x) < 0 for i = 1, . . . ,m, Ax = b

then d? = p?, and if furthermore d? = p? > −∞, then a dual sol. exists.

Proximal operator

Proximal operator with respect to αf :

Proxαf (y) = argmin
x∈Rn

{
αf(x) +

1

2
‖x− y‖2

}
for CCP f and α > 0. When α = 1, write Proxf .

Preliminaries 46

Proximal operator

If f is CCP, then Proxαf is well defined, i.e., argmin uniquely exists.

Proof. Let x0 ∈ ri dom f , g ∈ ∂f(x0). Then f(x) ≥ f(x0) + 〈g, x− x0〉
and

αf(x) +
1

2
‖x− y‖2︸ ︷︷ ︸

=f̃(x)

≥ αf(x0) + α〈g, x− x0〉+
1

2
‖x− y‖2︸ ︷︷ ︸

=h(x)

.

Since lim‖x‖→∞ h(x) =∞ and f̃ ≥ h, we have lim‖x‖→∞ f̃(x) =∞.

Therefore, f̃(xk)→ infx f̃(x) implies x0, x1, . . . is bounded. For any
convergent subsequence xkj → x̄, lower semi-continuity of f̃ implies
f̃(x̄) ≤ infx f̃(x). Thus f̃(x̄) = infx f̃(x), i.e., a solution exists. Finally,
f̃ is strictly convex, so the minimizer is unique.

Preliminaries 47

Proximal operator example: Soft-thresholding

Soft-thresholding operator S(x;κ) = Proxκ‖·‖1(x) has closed-form

(S(x;κ))i =

 xi − κ for κ < xi
0 for − κ ≤ xi ≤ κ
xi + κ for xi < −κ

for i = 1, . . . , n.

−κ
κ

S(x;κ)

Preliminaries 48

Proximal operator example: Projection

Projection onto nonempty closed convex C ⊆ Rn:

ΠC(y) = argmin
x∈C

‖x− y‖

Since ProxαδC = ProxδC = ΠC for any α > 0, proximal operators
generalize projections.

Preliminaries 49

Proximable functions

Evaluating Proxαf is an optimization problem itself. However, many
interesting convex f has a closed-form solution for Proxαf so it is a
useful subroutine.

f is proximable (informal definition) if Proxαf is computationally
efficient to evaluate. Catalog of proximable functions in several papers.

We decompose an optimization problem into smaller, simpler
differentiable or proximable functions and operate on them separately.

Preliminaries 50

	Introduction
	Preliminaries

