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Distributed and decentralized optimization

In this section, we solve

minimize
x∈Rp

r(x) +
1

n

n∑
i=1

(fi(x) + hi(x)), (1)

where r, f1, . . . , fn are CCP (and proximable) and h1, . . . , hn are CCP
and differentiable, in a computational setup where agents i = 1, . . . , n
each perform local computation with fi and hi and communicate over a
network to find the (shared) solution x?.

We distinguish distributed and decentralized methods:
distributed methods compute over a network (broader class) while
decentralized methods do so without central coordination (special case).
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Distributed and decentralized applications

One application of distributed optimization is solving extremely large
optimization problems that require the computing power of a cluster of
computers communicating over a network.

Another application is controlling a fleet of autonomous vehicles (such as
drones) or a wireless sensor network, where individual agents make
real-time decisions based on data gathered by itself and other agents.

Decentralized methods are effective for these setups as they minimize the
high cost and latency of communication.
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Centralized consensus

Consider a parameter-server network model with a centralized agent
coordinating with n individual agents.

Parameter server

Agent 1 Agent 2 · · · Agent n

We study distributed methods based on the consensus technique.

Throughout this section, write C = {(x1, . . . , xn) |x1 = · · · = xn ∈ Rp}
for the consensus set, an unbound index i is assumed to range from
i = 1, . . . , n, and we write the mean over i = 1, . . . , n with a bar
notation as in x̄k = (1/n)(xk1 + · · ·+ xkn) and ḡk = (1/n)(gk1 + · · ·+ gkn).
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Distributed proximal gradient method

Consider

minimize
x∈Rp

r(x) +
1

n

n∑
i=1

hi(x),

where h1, . . . , hn are differentiable. With consensus technique, obtain
equivalent problem

minimize
x1,...,xn∈Rp

r(x1) +
1

n

n∑
i=1

hi(xi)

subject to (x1, . . . , xn) ∈ C.

FBS is:

x
k+1/2
i = xk − α∇hi(xk)

xk+1 = Proxαr

(
1

n

n∑
i=1

x
k+1/2
i

)
.
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Distributed proximal gradient method

Equivalent to:

gki = ∇hi(xk)

xk+1 = Proxαr
(
xk − αḡk

)
.

This is the distributed proximal gradient method. Assume a solution
exists, h1, . . . , hn are Lh-smooth, and α ∈ (0, 2/Lh). Then xk → x?.
(When h1, . . . , hn not differentiable, can use proximal subgradient
method of §7.)

This method is (centralized) distributed:

(i) Each agent independently computes ∇hi(xk)

(ii) Agents coordinate to compute ḡk (reduction operation) and the
central agent computes and broadcasts xk+1 to all individual agents.
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Distributed ADMM

Consider

minimize
x∈Rp

n∑
i=1

fi(x).

With consensus technique, obtain equivalent problem:

minimize
x1,...,xn∈Rp

y∈Rp

n∑
i=1

fi(xi)

subject to xi = y.

Rewrite to fit ADMM’s form:

minimize
x1,...,xn∈Rp

y∈Rp

n∑
i=1

fi(xi)

subject to

I 0 · · · 0
...

. . .
...

0 0 · · · I


x1...
xn

+

−I...
−I

 y = 0.



Distributed ADMM

Apply ADMM:

xk+1
i = argmin

xi∈Rp

{
fi(xi) + 〈uki , xi − yk〉+

α

2
‖xi − yk‖2

}
yk+1 =

1

n

n∑
i=1

(
xk+1
i +

1

α
uki

)
uk+1
i = uki + α(xk+1

i − yk+1).

Simplify the iteration by noting that uk1 , . . . , u
k
n has mean 0 after the

initial iteration and eliminating yk:

xk+1
i = Prox(1/α)fi

(
x̄k − (1/α)uki

)
uk+1
i = uki + α(xk+1

i − x̄k+1).

This is distributed (centralized) ADMM. Convergence follows from
convergence of ADMM.
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Distributed ADMM

Distributed ADMM

xk+1
i = Prox(1/α)fi

(
x̄k − (1/α)uki

)
uk+1
i = uki + α(xk+1

i − x̄k+1)

is distributed:

(i) each agent independently performs the uk- and xk+1
i -updates with

local computation

(ii) agents coordinate to compute x̄k+1 with a reduction.
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Primal decomposition technique

The primal decomposition technique obtains a master problem through
minimizing away local variables. This is a special case of the infimal
postcomposition technique.

Consider the problem

minimize
xi∈Rpi

y∈Rq

r(y) +
1

n

n∑
i=1

fi(xi, y).

For a fixed y ∈ Rq, the minimization over x1, . . . , xn decomposes into n
embarrassingly parallel tasks. We call x1, . . . , xn local variables and y the
coupling variable.
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Primal decomposition technique

With φi(y) = infxi∈Rpi fi(xi, y), get equivalent master problem

minimize
y∈Rq

r(y) +
1

n

n∑
i=1

φi(y).

If φ1, . . . , φn are smooth, use proximal gradient method:

yk+1 = Proxαr

(
yk − α 1

n

n∑
i=1

∇φi(yk)

)
.

Using Exercise 11.2, we express the method as

x?i (y
k) ∈ argmin

xi∈Rpi

fi(xi, y
k)

(0, gki ) ∈ ∂fi(x?i (yk), yk)

yk+1 = Proxαr
(
yk − αḡk

)
,

provided that the argmins exists.

When r is proximable but φ1, . . . , φn are not smooth, we can apply the
proximal subgradient method of §7.



Example: Common bound problem

Agents i = 1, . . . , n each reduce its cost fi(xi) subject to the constraint
gi(xi) � y while paying a common cost r(y):

minimize
xi∈Rpi

y∈Rq

r(y) +

n∑
i=1

fi(xi)

subject to gi(xi) � y.

This problem is equivalent to the master problem

minimize
y∈Rq

r(y) +
1

n

n∑
i=1

φi(y),

where

φi(y) = inf
xi∈Rpi

{
nfi(xi) + δ{(xi,y) | gi(xi)�y}(xi, y)

}
.

See Exercise 11.6 for evaluating the subdifferential ∂φi(y).
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Example: Resource sharing problem

Agents i = 1, . . . , n each reduces its cost fi(xi) subject to a total
resource constraint

∑n
i=1 gi(xi) � y while paying a common cost r(y):

minimize
xi∈Rpi

y∈Rq

r(y) +

n∑
i=1

fi(xi)

subject to
n∑
i=1

gi(xi) � y.

This problem is equivalent to the master problem

minimize
y1,...,yn∈Rq

r(y1 + · · ·+ yn) +
1

n

n∑
i=1

φi(yi),

where φi(yi) = infxi∈Rpi{nfi(xi) + δ{(xi,yi) | gi(xi)�yi}(xi, yi)}. See
Exercise 11.6 for evaluating ∂φi(yi).
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Dual decomposition technique

Dual decomposition technique obtains a master problem by taking the
dual. This is the dualization technique, but the focus is on obtaining a
sum structure so that we can apply the base distributed methods.

Consider

minimize
xi∈Rpi

y∈Rq

n∑
i=1

fi(xi, y).

The equivalent primal problem

minimize
xi∈Rpi , zi=∈Rq

y∈Rq

n∑
i=1

fi(xi, zi)

subject to zi = y

is generated by the Lagrangian

L(x1, . . . , xn, y, z1, . . . , zn, v1, . . . , vn) =

n∑
i=1

(fi(xi, zi)− 〈vi, zi − y〉) .
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Dual decomposition technique

With

inf
y∈Rq

n∑
i=1

〈vi, y〉 =

{
0, if v1 + · · ·+ vn = 0

−∞, otherwise.

and
ψi(vi) = sup

xi∈Rp

zi∈Rq

{−fi(xi, zi) + 〈vi, zi〉} ,

we obtain the master dual problem

maximize
v1,...,vn∈Rq

−δC⊥(v1, . . . , vn)−
n∑
i=1

ψi(vi),

where C⊥ = {(v1, . . . , vn) | v1 + · · ·+ vn = 0}. (Cf. Exercise 11.8.)
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Dual decomposition technique

If ψ1, . . . , ψn are smooth, apply the projected gradient method:

gki = ∇ψi(vki )

vk+1
i = vki − α(gki − ḡk)

with initialization (v01 , . . . , v
0
n) ∈ C⊥. Using Exercise 11.3 we have

(x?i (v
k
i ), gki ) ∈ argmax

xi∈Rp

gi∈Rq

{
−fi(xi, gi) + 〈vki , gi〉

}
vk+1
i = vki − α(gki − ḡk),

provided that the argmins exist.

When φ1, . . . , φn are not smooth, we can apply the projected subgradient
method of §7 or distributed ADMM/DRS (cf. Exercise 11.9, 11.10).
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Dual decomposition with inequality constraints

Consider the resource sharing problem:

minimize
xi∈Rpi

y∈Rq

r(y) +
1

n

n∑
i=1

fi(xi)

subject to
n∑
i=1

gi(xi) � y.

This primal problem is generated by the Lagrangian

L(x1, . . . , xn, y, u) = r(y)−〈u, y〉+ 1

n

n∑
i=1

(fi(xi) + 〈u, gi(xi)〉)−δRn
+

(u),

where R
q
+ denotes the nonnegative orthant. With

ψi(u) =

{
supxi∈Rpi (〈−u, gi(xi)〉 − fi(xi)) if u � 0
∞ otherwise,

we obtain the master dual problem

maximize
u∈Rq

−r∗(u)− δRq
+

(u)− 1

n

n∑
i=1

ψi(u).



Dual decomposition with inequality constraints

If r∗ is proximable and ψ1, . . . ψn are smooth, we can apply DYS and
Exercise 11.3 to get

uk+1/2 = ΠR
q
+

(
ζk
)

xk+1
i ∈ argmin

xi∈Rpi

{
fi(xi) + 〈uk+1/2, gi(xi)〉

}
uk+1 = Proxαr∗

(
2uk+1/2 − ζk +

α

n

n∑
i=1

gi(x
k+1
i )

)
ζk+1 = ζk + uk+1 − uk+1/2.
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Dual decomposition with inequality constraints

If r = δ{b} and ψ1, . . . ψn are smooth, then r∗(u) = 〈u, b〉 and we can
apply the proximal gradient method and Exercise 11.3 to get

xk+1
i ∈ argmin

xi∈Rpi

{
fi(xi) + 〈uk, gi(xi)〉

}
uk+1 = ΠR

q
+

(
uk +

α

n

n∑
i=1

(
gi(x

k+1
i )− b

))
.

When r = δ{b} but ψ1, . . . ψn are not smooth, we can apply the projected
subgradient method of §7.
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Note on the word “graph”

“Graph” has two distinct meanings in mathematics.

The first meaning, as in “we plot the graph sin(x) on a graphing
calculator”, concerns the relationship between the inputs and outputs of
a function. The graph of an operator, which we denote as Gra�, and
the scaled relative graph uses this first meaning.

Here, we consider the second meaning, the use in discrete mathematics
for representing networks.
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Networks and graphs

A graph G = (V,E) represents a network. V is set of nodes and E is set
of edges. Assume

I Network is finite and with nodes 1 through n, i.e., V = {1, . . . , n}.
I Graph is undirected, i.e., an edge {i, j} ∈ E is an unordered pair of

distinct nodes i and j.

I Graph has no self-loops, i.e., {i, i} /∈ E for all i ∈ V .

I Graph is connected, i.e., for any i, j ∈ V such that i 6= j, there is a
sequence of edges

{i, v1}, {v1, v2}, . . . , {vk−1, vk}, {vk, j} ∈ E.
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Networks and graphs

With graphs, we can represent networks without a central coordinating
agent. The following graph has V = {1, 2, 3, 4, 5, 6} and
E = {{1, 2}, {1, 4}, {2, 3}, {3, 4}, {4, 5}, {4, 6}}.

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

A node represents a computational agent that stores data and performs
computation, and an edge {i, j} represents a direct connection between i
and j through which agents i and j can communicate.



Networks and graphs

If {i, j} ∈ E, then we say j is adjacent to i and that j is a neighbor of i
(and vice-versa). Write

Ni = {j ∈ V | {i, j} ∈ E}

for the set of neighbors i and |Ni| for the number of neighbors of i.

In the decentralized setup, assume r = 0. Using the notation of graphs,
we can recast problem (1) into

minimize
{xi}i∈V ⊂Rp

∑
i∈V

fi(xi) + hi(xi)

subject to xi = xj ∀ {i, j} ∈ E.
(2)
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Why decentralized optimization?

Because the network is connected, all agents can communicate with each
other. (Any computer can communicate with any other computer over
the internet.) Any optimization method can be executed over the
network through relayed communication over multiple edges.

However, in distributed optimization, communication tends to be the
bottleneck. So we consider algorithms that communicate across single
edges without directly relying on long-range relayed communication.
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Decentralized ADMM

Consider h1 = · · · = hn = 0. For e = {i, j}, replace the constraint
xi = xj with xi = ye and xj = ye to obtain the equivalent problem

minimize
{xi}i∈V
{ye}e∈E

∑
i∈V

fi(xi)

subject to

{
xi − ye = 0

xj − ye = 0
∀ e = {i, j} ∈ E.

For each e = {i, j} ∈ E, introduce the dual variables ue,i for xi − ye = 0
and ue,j for xj − ye = 0. The augmented Lagrangian is

Lα(x, y, u) =
∑
i

fi(xi) +
∑

e={i,j}

(〈ue,i, xi − ye〉+ 〈ue,j , xj − ye〉)

+
∑

e={i,j}

α

2

(
‖xi − ye‖2 + ‖xj − ye‖2

)
.
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Decentralized ADMM

Express ADMM as

xk+1
i = argmin

xi∈Rp

fi(xi) + ∑
j∈Ni

(
〈uk

{i,j},i, xi − yk{i,j}〉+
α

2
‖xi − yk{i,j}‖2

) ∀i ∈ V
yk+1
e = argmin

ye∈Rp

{∑
t=i,j

(
〈uk

e,t, x
k+1
t − ye〉+

α

2
‖xk+1

t − ye‖2
)}

∀e = {i, j} ∈ E

uk+1
e,t = uk

e,t + α(xk+1
t − yk+1

e ) ∀e = {i, j} ∈ E, t = i, j.

We simplify further.
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Decentralized ADMM

Substitute yk+1
e = 1

2

∑
t=i,j(x

k+1
t + 1

αu
k
e,t):

uk+1
e,i = uke,i + α

xk+1
i − 1

2

∑
t=i,j

(
xk+1
t +

1

α
uke,t

)
=

1

2
(uke,i − uke,j) +

α

2
(xk+1
i − xk+1

j ), ∀e = {i, j} ∈ E.

Using uke,i + uke,j = 0 for all e = {i, j} and k = 1, 2, . . . , write

yke = 1
2 (xki + xkj ), uk+1

e,i = uke,i + α
2 (xk+1

i − xk+1
j ), and

xk+1
i = argmin

xi∈Rp

fi(xi) + α

2

∑
j∈Ni

∥∥∥∥xi − 1

2
(xki + xkj ) +

1

α
uk
{i,j},i

∥∥∥∥2


= argmin
xi∈Rp

fi(xi) + α|Ni|
2

∥∥∥∥∥∥xi − 1

|Ni|
∑
j∈Ni

(
1

2
(xki + xkj )−

1

α
uk
{i,j},i

)∥∥∥∥∥∥
2

for all i ∈ V .
Decentralized optimization with graph consensus 29



Decentralized ADMM

Defining vki = 1
|Ni|

∑
j∈Ni

(
1
2 (xki + xkj )− 1

αu
k
{i,j},i

)
and

aki = 1
|Ni|

∑
j∈Ni

xkj and obtain: for every i ∈ V

xk+1
i = Prox(α|Ni|)−1fi(xi)(v

k
i )

ak+1
i =

1

|Ni|
∑
j∈Ni

xk+1
j

vk+1
i = vki + ak+1

i − 1

2
aki −

1

2
xki

for i ∈ V . This is decentralized ADMM. Convergence follows from
convergence of ADMM.
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Decentralized ADMM

Decentralized ADMM

xk+1
i = Prox(α|Ni|)−1fi(xi)(v

k
i )

ak+1
i =

1

|Ni|
∑
j∈Ni

xk+1
j

vk+1
i = vki + ak+1

i − 1

2
aki −

1

2
xki

is decentralized:

(i) Each agent independently performs the vk- and xk+1-updates with
local computation.

(ii) Agents send xk+1
i to its neighbors and each agent computes ak+1

i by
averaging the xk+1

j ’s received from its neighbors (reduction
operation in the neighborhood).
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Synchronization

The decentralized methods we study are synchronous, which can be an
unrealistic requirement.

One can use asynchronous decentralized methods, which combine the
asynchrony of §6 with the methods of this section.
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Decentralized notation

Define stack operator and use boldface to denote stacked variables:

x = stack(x1, . . . , xn) =

— xᵀ1 —
...

— xᵀn —

 ∈ Rn×p.

Write x? ∈ Rp and x? = stack(x?, . . . , x?) ∈ Rn×p for the solution.
For x = stack(x1, . . . , xn) and y = stack(y1, . . . , yn), define

〈x,y〉 =

n∑
i=1

〈xi, yi〉.

For any symmetric positive semidefinite A ∈ Rn×n, define
‖x‖2A = 〈x, Ax〉. Specifically, ‖x‖2 = ‖x‖2I = 〈x,x〉.



Decentralized notation

Define

f(x) =

n∑
i=1

fi(xi), h(x) =

n∑
i=1

hi(xi)

Proxαf (x) = stack(Proxαf1(x1), . . . ,Proxαfn(xn))

∇h(x) = stack(∇h1(x1), . . . ,∇hn(xn)).

We say x = stack(x1, . . . , xn) is in consensus if x1 = · · · = xn.
A solution (or any feasible point) of (2) is in consensus. The methods of
this section produce iterates that are in consensus in the limit.



Mixing matrices

Informally, W ∈ Rn×n is a mixing matrix when an application of W
represents a round of communication and the aggregation of the
communicated information. Write λ1, . . . , λn for the eigenvalues of W .

W is a decentralized mixing matrix with respect to G = (V,E) if
Wij = 0 when i 6= j and {i, j} /∈ E. (Wii may be nonzero.)

Wy can be evaluated in a decentralized manner if W is decentralized:

(Wy)i =

n∑
j=1

Wijyj =
∑

j∈Ni∪{i}

Wijyj .
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Example: Local averaging matrix

With mixing matrix

Wij =

{ 1
|Ni| if {i, j} ∈ E
0 otherwise

for i, j ∈ {1, . . . , n} and

f̃(x) =

n∑
i=1

1

|Ni|
fi(xi),

we can express decentralized ADMM as

xk+1 = Proxαf̃ (vk)

ak+1 = Wxk+1

vk+1 = vk + ak+1 − 1

2
ak − 1

2
xk.
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Decentralized averaging

Agent i ∈ V has a vector xi ∈ Rp and goal is to compute the average
x̄ = 1

n

∑n
i=1 xi in a decentralized manner.

(This is a special case of (1) with fi(x) = 1
2‖x− xi‖

2.)

Decentralized averaging method:

xk+1 = Wxk

with the starting point x0 = stack(x1, . . . , xn) and a decentralized
mixing matrix W ∈ Rn×n. Converges for all x0 if and only if W1 = 1,
1ᵀW = 1ᵀ, and 1 = |λ1| > |λ2| ≥ · · · ≥ |λn|. (Cf. Exercise 11.14.)

Condition W1 = 1 implies x-vectors in consensus are fixed points.
Condition 1ᵀW = 1ᵀ implies mean is preserved throughout the iteration.
Eigenvalue condition implies the iteration converges.
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Assumptions on mixing matrices

A mixing matrix W ∈ Rn×n used in decentralized optimization often
satisfies some or all of the following assumptions:

W = W ᵀ (3a)

N (I −W ) = span(1) (3b)

1 = |λ1| > max {|λ2|, . . . , |λn|}. (3c)

(3a) was not assumed in decentralized ADMM or averaging, but it is
common; methods with symmetric W tend to be easier to analyze.
(3b) implies x is in consensus if and only if x = Wx and is required for
almost all decentralized optimization methods.
(3c) is assumed to establish the convergence of certain methods. Note
that (3a) implies the eigenvalues are real (but not necessarily
nonnegative) and assumption (3b) implies 1 = λ1.
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Example: Laplacian-based mixing matrix

Consider the symmetric mixing matrix

W = I − 1

τ
L ∈ Rn×n,

where L is the graph Laplacian

Lij =

 |Ni| if i = j
−1 if {i, j} ∈ E
0 otherwise

for i, j ∈ {1, . . . , n} and τ is a constant satisfying τ > 1
2λmax(L). Using

standard arguments with the graph Laplacian, one can show that
W1 = 1 and 1 = λ1 > max {|λ2|, . . . , |λn|}.
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Example: Metropolis mixing matrix

Consider the symmetric mixing matrix W ∈ Rn×n defined by

Wij =


1

max{|Ni|,|Nj |}+ε if {i, j} ∈ E
1−

∑
j∈Ni

Wij if i = j

0 otherwise

for i, j ∈ {1, . . . , n}, where ε > 0. Using standard arguments with the
Perron–Frobenius theory (W is a stochastic matrix for an irreducible and
aperiodic Markov chain), one can show W1 = 1 and
1 = λ1 > max {|λ2|, . . . , |λn|}.
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Relationship with stochastic matrices

P ∈ Rn×n satisfying Pij ≥ 0 ∀ i, j and P1 = 1 is a stochastic matrix.

Mixing matrices and stochastic matrices share some apparent similarities,
but they do have some key differences.

One difference is that mixing matrices can have negative entries. (Cf.
Exercise 11.16.)

Another difference is in their primary use as linear operators. With a
stochastic matrix P satisfying P1 = 1 (total probability mass of 1 is
preserved) the key operation is the vector-matrix product

(πk+1)ᵀ = (πk)ᵀP.

With mixing matrix W satisfying W1 = 1 (vector in consensus remains
in consensus) the key operation is the matrix-(stacked vector) product

xk+1 = Wxk.
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Relationship with stochastic matrices

When a mixing matrix is a stochastic matrix, one can utilize the classical
Markov chain theory based on the Perron–Frobenius theorem. For
example, if W ∈ Rn×n is a stochastic matrix for an irreducible Markov
chain, then N (I −W ) = span(1) holds; if the Markov chain is
irreducible and aperiodic, then 1 = λ1 > max{|λ2|, . . . , |λn|} holds.
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Dynamic mixing matrix

For simplicity, we assumed mixing matrices do not depend on the
iteration.

However, when the connectivity of the underlying graph is dynamic, one
has to use a series of dynamic mixing matrices instead of a fixed one.
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Inexact decentralized methods

Consider

minimize
x∈Rp

1

n

n∑
i=1

hi(x),

and a symmetric mixing matrix W ∈ Rn×n satisfying
N (I −W ) = span(1) and 1 = λ1 > max {λ2, . . . , λn}. We can
equivalently write the problem as

minimize
x∈Rn×p

h(x)

subject to (I −W )x = 0.
(4)

We now consider inexact decentralized methods that solve a penalty
formulations that approximate (4). When these inexact methods
converge, they converge to an approximation of the original solution.
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Decentralized gradient descent (DGD)

Consider the penalty formulation

minimize
x∈Rn×p

h(x) +
1

2α
‖x‖2I−W .

We expect this formulation to approximate (4) well when α > 0 is small.

Gradient descent with stepsize α applied to this penalty formulation is

xk+1 = xk − α
(
∇h(xk) +

1

α
(I −W )xk

)
= Wxk − α∇h(xk).

We call this decentralized gradient descent (DGD) or the
combine-then-adapt method. DGD is decentralized when W is a
decentralized mixing matrix. Assume the penalty formulation has a
solution, h1, . . . , hn are L-smooth, and α ∈ (0, (1 + λn(W ))/L). Then
xk converges to a solution of the penalty formulation.
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Diffusion

Further assume W � 0 and consider the penalty formulation

minimize
x∈Rn×p

h(x) +
1

2α
‖x‖2W−1−I .

FBS with (� + α�)−1(�− α�), where � = ∇h, � = 1
α (W−1 − I), is

xk+1 = W (xk − α∇h(xk)).

Note that W−1 appears in the analysis and formulation of the algorithm,
but not within the iteration xk+1 = W (xk − α∇h(xk)).

We call this diffusion or the adapt-then-combine method. Diffusion is
decentralized when W is a decentralized mixing matrix. Assume the
penalty formulation has a solution, h1, . . . , hn are Lh-smooth, and
α ∈ (0, 2/Lh). Then xk converges to a solution of the penalty
formulation.
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Diffusion

The stepsize condition for diffusion α < 2/L is wider than the stepsize
condition for DGD α < (1 + λn(W ))/L. Loosely speaking, use of a
larger stepsize often leads to faster convergence.

When min{λ2, . . . , λn} > 0 does not hold, we can still use diffusion
using the positive definite mixing matrix (1− θ)I + θW with
θ ∈ (0, 1/(1−min{λ2, . . . , λn})).
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Exact decentralized methods

Consider a symmetric mixing matrix W ∈ Rn×n satisfying
N (I −W ) = span(1) and 1 = λ1 > max {λ2, . . . , λn}. Since I −W is
symmetric positive semidefinite, there exists a U ∈ Rn×n such that

U2 =
1

2
(I −W ).

Note, N (U) = span(1).

Consider

minimize
x∈Rp

1

n

n∑
i=1

fi(x) + hi(x),

which is equivalent to

minimize
x∈Rn×p

f(x) + h(x) + δ{0}(Ux).

We now present methods that converge to an exact solution. The
algorithms utilize W , while U is used only in the analysis.
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PG-EXTRA

Apply Condat–Vũ of Exercise 3.5 with g = δ{0} (so Proxβg∗ = �) to get

uk+1 = uk + βUxk

xk+1 = Proxαf
(
xk − α∇h(xk)− αU(2uk+1 − uk)

)
.

Initialize u0 = 0 but set x0 arbitrarily. To eliminate U , define
wk = 1

βUuk = 1
2 (I −W )

∑k−1
j=0 x

k. Choose β = α−1 for simplicity and
rearrange the terms to get

xk+1 = Proxαf (Wxk − α∇h(xk)−wk)

wk+1 = wk +
1

2
(I −W )xk,

where we initialize w0 = 0 and set x0 arbitrarily.
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PG-EXTRA

This method is called PG-EXTRA

xk+1 = Proxαf (Wxk − α∇h(xk)−wk)

wk+1 = wk +
1

2
(I −W )xk.

Assume total duality holds, h1, . . . , hn are L-smooth, and
0 < α < (1 + λmin(W ))/L. Then, xk → x?. The stepsize bound follows
from the stepsize of Condat–Vũ and λmax(U2) = 1/2− 1/2λmin(W ).
The method EXTRA is the special case of EXTRA with f = 0.



NIDS

Apply PD3O to

minimize
x∈Rn×p

f(x) + h(x) + δ{0}(Ux)

to get

xk+1 = Proxαf (xk − αUuk − α∇h(xk))

uk+1 = uk + βU
(
2xk+1 − xk + α

(
∇h(xk)−∇h(xk+1)

))
.

Initialize u0 = 0 but set x0 arbitrarily. To eliminate U , define
zk = xk − αUuk − α∇h(xk). Choose β = α−1 for simplicity and
rearrange the terms to get

xk+1 = Proxαf (zk)

zk+1 = zk − xk+1 +
1

2
(I +W )

(
2xk+1 − xk + α

(
∇h(xk)−∇h(xk+1)

))
,

where we initialize z0 = x0 − α∇h(x0) but set x0 arbitrarily.
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NIDS

This method is called the Network InDependent Step-size (NIDS) method

xk+1 = Proxαf (zk)

zk+1 = zk − xk+1 +
1

2
(I +W )

(
2xk+1 − xk + α

(
∇h(xk)−∇h(xk+1)

))
.

Assume total duality holds, h1, . . . , hn are L-smooth, and α ∈ (0, 2/L).
Then xk → x?. Note that the choice of α ∈ (0, 2/L) is independent of
the mixing matrix and, thus, the network topology.
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PG-EXTRA vs. NIDS

The stepsize requirement of NIDS is more favorable than that of
PG-EXTRA. The stepsize α of PG-EXTRA is affected by the eigenvalues
of W , thus, also by the network structure. This not only limits the size of
α but also make the choice of α more difficult when the network is not
fully known. In contrast, the stepsize α of NIDS can be chosen
independently of W .

On the other hand, PG-EXTRA can compute Wxk and ∇h(xk)
simultaneously, but NIDS must do its corresponding steps sequentially.
Therefore, PG-EXTRA can be implemented more efficiently than NIDS.
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PG-EXTRA vs. NIDS

In the case f = 0, we can simplify the two methods to

PG-EXTRA: xk+1 = W̃ (2xk − xk−1) + α(∇h(xk−1)−∇h(xk))

NIDS: xk+1 = W̃
(
2xk − xk−1 + α(∇h(xk−1)−∇h(xk))

)
,

where W̃ = 1
2 (W + I). PG-EXTRA resembles DGD while NIDS

resembles diffusion.
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