Distributed and Decentralized Optimization

Ernest K. Ryu

Mathematical and Numerical Optimization
Fall 2021

Distributed and decentralized optimization

In this section, we solve

minimize)+
rERP

> (i (), (1)

i=1

S|

where r, f1,..., f, are CCP (and proximable) and h4,...,h, are CCP
and differentiable, in a computational setup where agentsi=1,...,n
each perform local computation with f; and h; and communicate over a
network to find the (shared) solution z*.

We distinguish distributed and decentralized methods:
distributed methods compute over a network (broader class) while
decentralized methods do so without central coordination (special case).

Distributed and decentralized applications

One application of distributed optimization is solving extremely large
optimization problems that require the computing power of a cluster of
computers communicating over a network.

Another application is controlling a fleet of autonomous vehicles (such as
drones) or a wireless sensor network, where individual agents make
real-time decisions based on data gathered by itself and other agents.

Decentralized methods are effective for these setups as they minimize the
high cost and latency of communication.

Outline

Distributed optimization with centralized consensus

Distributed optimization with centralized consensus

Centralized consensus

Consider a parameter-server network model with a centralized agent
coordinating with n individual agents.

Parameter server

We study distributed methods based on the consensus technique.

Throughout this section, write C = {(z1,...,z,) |21 =+ = 2, € RP}
for the consensus set, an unbound index ¢ is assumed to range from
i=1,...,n, and we write the mean over i = 1,...,n with a bar

notation as in % = (1/n)(a¥ +---+2F) and g*¥ = (1/n)(gF +--- + g&).

Distributed optimization with centralized consensus

Distributed proximal gradient method

Consider
1 n
C 1 hi(a),
minimize r(x) + . z_; (2)
where hq, ..., h, are differentiable. With consensus technique, obtain

equivalent problem

1 n
inimi N b
minimize, 7(z1) + >
subject to (z1,...,z,) € C.

FBS is:

fo/Z =azF — aVh;(2")

1 n
k+1 k+1/2
2t = Prox,, (n E x;) .

=1

Distributed optimization with centralized consensus

Distributed proximal gradient method

Equivalent to:

gF = Vhi(2*)

2Pt = Prox,, (xk — agk) .

This is the distributed proximal gradient method. Assume a solution
exists, hy,...,h, are Ly-smooth, and o € (0,2/Ly). Then ¥ — z*.
(When hq, ..., h, not differentiable, can use proximal subgradient
method of §7.)

This method is (centralized) distributed:
(i) Each agent independently computes Vh; (%)

(i) Agents coordinate to compute g* (reduction operation) and the
central agent computes and broadcasts z*t! to all individual agents.

Distributed optimization with centralized consensus

Distributed ADMM

Consider

minimize
rERP

Z filz

With consensus technique, obtain equivalent problem:

minimize

Z1yeensTn ERP

yERP
subject to

Rewrite to fit ADMM'’s form:

n
minimize E fi(xs)
z1,...,2n ERP £

yERP i=1

I 0
subject to

Zfi(l“i)

Distributed ADMM

Apply ADMM:
. o
xf“ = argmin {fl(mz) + (uf 2y — k) + < |z — yk||2}
z; ERP 2
=t zn: L
ni= ' a’

k+1 _ k k+1 k41
w T =uf ol -y,

Simplify the iteration by noting that u¥, ..., u* has mean 0 after the
initial iteration and eliminating y*:

k! = Prox(1/a)f, (" — (1/a)uf)

3
ui—”l (chJrl —zFt),

:uf—i—a

This is distributed (centralized) ADMM. Convergence follows from
convergence of ADMM.

Distributed optimization with centralized consensus

Distributed ADMM

Distributed ADMM

xf“ = Prox(1/a)/f, (fk - (1/04)@6?)

ukH (ah+1 — gty

_ .k
i = U T

is distributed:

k+1

(i) each agent independently performs the u”- and x;

local computation

-updates with

(i) agents coordinate to compute Z**! with a reduction.

Distributed optimization with centralized consensus

10

Primal decomposition technique

The primal decomposition technique obtains a master problem through
minimizing away local variables. This is a special case of the infimal
postcomposition technique.

Consider the problem

- I8N
minimize r(y)+E;fi($z,y)'

x; ERPI

yeR?
For a fixed y € R4, the minimization over x1,...,x, decomposes into n
embarrassingly parallel tasks. We call =1, ...z, local variables and y the

coupling variable.

Distributed optimization with centralized consensus 11

Primal decomposition technique

With ¢;(y) = inf,,ere: fi(2i,y), get equivalent master problem

minimize 7(y) + % ;@(y)

yeR?

If ¢1,..., ¢, are smooth, use proximal gradient method:

1 n
K1 _p kL s
T (R)

Using Exercise 11.2, we express the method as

*

z} (y*) € argmin f;(z;,y*)

z, ERPi
yk+1 PrOXa'r (yk —ag)

provided that the argmins exists.

When r is proximable but ¢, ..., ¢, are not smooth, we can apply the
proximal subgradient method of §7.

Example: Common bound problem

Agents i = 1,...,n each reduce its cost f;(x;) subject to the constraint
gi(z;) = y while paying a common cost 7(y):

x; ERP
y€eR?
subject to g;(z;) 2 y.

minimize r(y) + Zfz(lfz)
i=1

This problem is equivalent to the master problem

minimize r(y) + i;@(y)a

yERY
where

di(y) = inf {nfi(@:) + 64(ai0) | g (ei) =} (@ir Y) } -

x; ERPi

See Exercise 11.6 for evaluating the subdifferential 0¢;(y).
Distributed optimization with centralized consensus 13

Example: Resource sharing problem

Agents i = 1,...,n each reduces its cost f;(x;) subject to a total
resource constraint » ., g;(x;) < y while paying a common cost 7(y):

x; ERP
yER?

n
minimize r(y) + Zfl(a:z)
i=1
n
subject to Zgl(xz) <.
i=1
This problem is equivalent to the master problem

L 1
€ n - E i\Yi),
yT.I.r?,Ig;gleZRq rlt ety)+ni:1¢ (3:)

where ¢;(y;) = info, erri {nfi (%) + 0{(wi,9:) | gs(wi) =i} (Ti> Yi) }. See
Exercise 11.6 for evaluating 9¢;(y;).

Distributed optimization with centralized consensus 14

Dual decomposition technique

Dual decomposition technique obtains a master problem by taking the
dual. This is the dualization technique, but the focus is on obtaining a

sum structure so that we can apply the base distributed methods.

Consider

3?7‘,€Rp"
yeRY

n

minimize Zfi(:vi,y).
i=1

The equivalent primal problem

z; ERPI, 2;=€RY
yER?
subject to Zi =y

n
minimize Zfz(xmzl)
i1

is generated by the Lagrangian

n
L(xlﬂ"'7xnvyvzlv"'7znvvlv'"7U’n) = Z(fz(xzvzz) - <Uivzi _y>)

i=1

Distributed optimization with centralized consensus

15

Dual decomposition technique

With
e 0, ifoi+-+v,=0
inf <vi7 y> = .
yER? —00, otherwise.
and
wl(vl) = Sup {7f74($13 Zl) + <U'La ZZ>},
z;ERP
z, €ERY

we obtain the master dual problem

n

maximize —dcu1(v1,...,0,) — Z ¥;(v;),

V1,...,0n ERY P

where C+ = {(v1,...,v,)|v1 4 -+ + v, = 0}. (Cf. Exercise 11.8.)

Distributed optimization with centralized consensus

16

Dual decomposition technique

If ¥1,...,, are smooth, apply the projected gradient method:

g5 = Vi (vf)

k1 _ ok k_ -k
”iJr =v —agi —g")
with initialization (v9,...,v%) € C*. Using Exercise 11.3 we have

(xr(v}), g) € argmax {—fi(xi, 9) + (vF, 9:)}
JER
;;ERQ

vith =of —algf - 3°),

provided that the argmins exist.

When ¢4, ..., ¢, are not smooth, we can apply the projected subgradient
method of §7 or distributed ADMM/DRS (cf. Exercise 11.9, 11.10).

Distributed optimization with centralized consensus

Dual decomposition with inequality constraints
Consider the resource sharing problem:
1 n
minimize r(y) + - ;fl(ac)

z,ERPI
yER“

subject to Zgi(mi) <y.
i=1

This primal problem is generated by the Lagrangian

> (i (u, gi(w:))) = Omey (u),

i=1

L(xlw"?xnay?) T(+

:\'—‘

where R denotes the nonnegative orthant. With

Pi(u) = { SUp,, cprs ((—u, gi(2:)) — fi(z:)) ifu=0

00 otherwise,

we obtain the master dual problem

maximize —r*(u) — 6Rq ——sz

u€ERY

Dual decomposition with inequality constraints

If »* is proximable and 1)1, ..., are smooth, we can apply DYS and
Exercise 11.3 to get

kT2 = HRi (Ck)
xf“ S argg{lin {fz(%) + <Uk+1/2a9i(xi)>}
z; ERPi
i=1

n
k1 _ p ok ok o (k1
u rOX g (u ¢+ - Zgl(xl)

Ck+1 _ Ck + uk+1 o Uk+1/2.

Distributed optimization with centralized consensus

19

Dual decomposition with inequality constraints

If 7 = 65y and ¥y, ..., are smooth, then r*(u) = (u,b) and we can
apply the proximal gradient method and Exercise 11.3 to get

xf“ € argmin {fz(azl) + (uk,gi(azi»}
x;, ERPi

ukbtt = Mg (uk + % Z (gi(zfth) — b)> .

i=1

When r = d13y but 41, ..., are not smooth, we can apply the projected
subgradient method of §7.

Distributed optimization with centralized consensus

20

Outline

Decentralized optimization with graph consensus

Decentralized optimization with graph consensus

21

Note on the word “graph”

“Graph” has two distinct meanings in mathematics.

The first meaning, as in “we plot the graph sin(x) on a graphing
calculator”, concerns the relationship between the inputs and outputs of
a function. The graph of an operator, which we denote as Gra A, and
the scaled relative graph uses this first meaning.

Here, we consider the second meaning, the use in discrete mathematics
for representing networks.

Decentralized optimization with graph consensus

22

Networks and graphs

A graph G = (V, E) represents a network. V is set of nodes and E is set
of edges. Assume
» Network is finite and with nodes 1 through n, i.e., V ={1,...,n}.

» Graph is undirected, i.e., an edge {7,j} € E is an unordered pair of
distinct nodes 7 and j.

» Graph has no self-loops, i.e., {i,i} ¢ E forall i € V.

» Graph is connected, i.e., for any i,j € V such that i # j, there is a
sequence of edges

{i7vl}7 {’111,112}, LR {Uk—lyvk}a {Ukaj} € E.

Decentralized optimization with graph consensus

23

Networks and graphs

With graphs, we can represent networks without a central coordinating
agent. The following graph has V = {1,2,3,4,5,6} and
E= {{1’ 2}’ {1’ 4}’ {27 3}7 {37 4}7 {47 5}7 {47 6}}

A node represents a computational agent that stores data and performs
computation, and an edge {4, j} represents a direct connection between i
and j through which agents 7 and j can communicate.

Networks and graphs

If {¢,j} € E, then we say j is adjacent to ¢ and that j is a neighbor of i
(and vice-versa). Write

Ny ={jeV|{ij} € E}

for the set of neighbors i and |N;| for the number of neighbors of i.

In the decentralized setup, assume r = 0. Using the notation of graphs,
we can recast problem (1) into
minimize i(x;) + hi(x;
Minimize, ;fx i)+ haw:)
subject to z; =x; V {i,j} € E.

()

Decentralized optimization with graph consensus 25

Why decentralized optimization?

Because the network is connected, all agents can communicate with each
other. (Any computer can communicate with any other computer over
the internet.) Any optimization method can be executed over the
network through relayed communication over multiple edges.

However, in distributed optimization, communication tends to be the
bottleneck. So we consider algorithms that communicate across single
edges without directly relying on long-range relayed communication.

Decentralized optimization with graph consensus

26

Decentralized ADMM

Consider hy = --- = h,, = 0. For e = {i, j}, replace the constraint
x; = x; with x; = y. and x; = y. to obtain the equivalent problem

minimize Zfz(xl)

bl @
| e =0
subject to ¢ U° Ve={ij}€E.
IEj — Ye = 0

For each e = {i,j} € E, introduce the dual variables u. ; for z; — y. =0
and u. ; for x; —y. = 0. The augmented Lagrangian is

(z,y,u Zfz ;) Z ((te,is i = Ye) + (te,j, 5 — Ye))
e={i,j}

+ Z (s = yell® + llzj — vell?) -
e= {m}

Decentralized optimization with graph consensus 27

Decentralized ADMM

Express ADMM as

. a)
zy Tt = argmin ¢ fi(z:) + Z ((Ulfi,j},iaxi —Yig) + 5”331 - yfi,j}‘ﬁ) VieV

. ERP
x; ER JEN;
+

Ye ERP t—ij

ult =l ol -yt Ve={i,j} € E, t=1i,j.

We simplify further.

Decentralized optimization with graph consensus

yt*! = argmin { > ((wbeak™ = ye) + Slab ™t - yeIIQ)} Ve={i,j} € E

28

Decentralized ADMM

Substitute yk*! = 3 Zt ”(a4+ Ue ML

1 1
k+ B+ k+1 o
t=1i,j
Lo k

:i(ue,i_ue,j)+§ i
Usingule“lJruk =0foralle={i,j} and k=1,2,..., write
vé = g(af +ab), it = uf; + § (2 — 2", and
2

¥t = argmin { fi(x;)
x; ERP

1, & 1 4
P 5 (@ ag) gy

]GN

. aNi 1
= argmin ¢ fi(x;) + |2 | Ti— |N| Z(+$§)_aul{ci,j},i>

x; ERP JjEN;

forallie V.
Decentralized optimization with graph consensus

S(aktt — 2k, Ve ={i,j} € E.

29

Decentralized ADMM

Defining vF = lel ZjeNi (%(xf + x?) - éulfi,j},i) and

af = (577 2jen, @5 and obtain: for every i € V
2 = Proxgain -1 (e (07)
g+ = ﬁ Z 2t

JEN;
Uf“ = vf + af“ — %af — %xf

for i € V. This is decentralized ADMM. Convergence follows from
convergence of ADMM.

Decentralized optimization with graph consensus

30

Decentralized ADMM

Decentralized ADMM

If-H = PYOX(a|N'|)*1fi(Ii)(rU1]'€)

k+1 _ Z k+1
a’ =
' INIJGN

_ U 4 akJrl

Uf+1
is decentralized:
(i) Each agent independently performs the v*- and z**+!-updates with
local computation.
(ii) Agents send x; k+1 to its neighbors and each agent computes a;
averaging the xk“ s received from its neighbors (reduction
operation in the neighborhood).

k+1 by

Decentralized optimization with graph consensus

Synchronization

The decentralized methods we study are synchronous, which can be an
unrealistic requirement.

One can use asynchronous decentralized methods, which combine the
asynchrony of §6 with the methods of this section.

Decentralized optimization with graph consensus

32

Outline

Decentralized optimization with mixing matrices

Decentralized optimization with mixing matrices

33

Decentralized notation

Define stack operator and use boldface to denote stacked variables:

— 2] —
x = stack(z1,...,2,) = 5 € R"¥P,
J— x;l; J—
Write 2* € RP and x* = stack(z*,...,z*) € R™*P for the solution.

For x = stack(xy,...,x,) and y = stack(y1,...,yn), define

n

(x,y) = Z<$i,yi>~

i=1

For any symmetric positive semidefinite A € R™*", define
1x[% = (x, Ax). Specifically, [x[|* = [|x[|7 = (x,x).

Decentralized notation

Define
fO) = filwi), h(x) = hilx;)
i=1 i=1
Proxq(x) = stack(Proxay, (1), ..., Proxas, (z,))
Vh(x) = stack(Vhi(z1), ..., Vhg(xn)).
We say x = stack(z1,...,x,) is in consensus if 1 = -+ = x,,.

A solution (or any feasible point) of (2) is in consensus. The methods of
this section produce iterates that are in consensus in the limit.

Mixing matrices

Informally, W € R™*™ is a mixing matrix when an application of W
represents a round of communication and the aggregation of the
communicated information. Write A\q,..., A, for the eigenvalues of .

W is a decentralized mixing matrix with respect to G = (V, E) if
W;; =0 when i # j and {i,j} ¢ E. (W;; may be nonzero.)

Wy can be evaluated in a decentralized manner if W is decentralized:

Wy i = ZW’Ljyj = Z Wijyj'

JEN;U{i}

Decentralized optimization with mixing matrices 36

Example: Local averaging matrix

With mixing matrix

—_—— |1§i| if {i,j} € E
k 0 otherwise

fori,j € {1,...,n} and

we can express decentralized ADMM as

k+

xPH = Proxaf(vk)

aftlh = Wwxkt!

1 1
k+1 _ Kk k+1 k k
v =v'+a" —-a" - -x".
+ 3 2

Decentralized optimization with mixing matrices

37

Decentralized averaging

Agent i € V has a vector z; € RP and goal is to compute the average
T = %Z?:l x; in a decentralized manner.

(This is a special case of (1) with f;(z) = 3|lz — z]|%.)

Decentralized averaging method:
xFT = Wxk

with the starting point x° = stack(x1,...,2,) and a decentralized
mixing matrix W € R™*". Converges for all x° if and only if W1 =1,
1TW =17, and 1 = |A1]| > |A2| > -+ > |An]. (Cf. Exercise 11.14.)

Condition W1 = 1 implies x-vectors in consensus are fixed points.
Condition 1TW = 1T implies mean is preserved throughout the iteration.
Eigenvalue condition implies the iteration converges.

Decentralized optimization with mixing matrices

38

Assumptions on mixing matrices

A mixing matrix W € R™*™ used in decentralized optimization often
satisfies some or all of the following assumptions:

W—wT (3a)
N(I — W) = span(1) (3b)
1= | > max {[a], - [Anl}. (3¢)

(3a) was not assumed in decentralized ADMM or averaging, but it is
common; methods with symmetric W tend to be easier to analyze.
(3b) implies x is in consensus if and only if x = Wx and is required for
almost all decentralized optimization methods.

(3c) is assumed to establish the convergence of certain methods. Note
that (3a) implies the eigenvalues are real (but not necessarily
nonnegative) and assumption (3b) implies 1 = A;.

Decentralized optimization with mixing matrices

39

Example: Laplacian-based mixing matrix

Consider the symmetric mixing matrix
1 nxn
W=I1--LeR"™",
T

where L is the graph Laplacian

|N:| ifi=
Lz’jz —1 if {Z,j}GE
0 otherwise

fori,j € {1,...,n} and 7 is a constant satisfying 7 > Amax(L). Using
standard arguments with the graph Laplacian, one can show that
W1l=1and 1=X >max{|Aa|,...,| |}

Decentralized optimization with mixing matrices

40

Example: Metropolis mixing matrix

Consider the symmetric mixing matrix W € R™*" defined by

1 . . .
ERinARnA = LR U D
Wij=9 1= en,Wis ifi=j
0 otherwise
for i,j € {1,...,n}, where ¢ > 0. Using standard arguments with the
Perron—Frobenius theory (W is a stochastic matrix for an irreducible and

aperiodic Markov chain), one can show W1 =1 and
1= X1 > max{|Az],..., [Anl}.

Decentralized optimization with mixing matrices

41

Relationship with stochastic matrices

P € R™*" satisfying P;; > 0 Vi,j and P1 = 1 is a stochastic matrix.

Mixing matrices and stochastic matrices share some apparent similarities,
but they do have some key differences.

One difference is that mixing matrices can have negative entries. (Cf.
Exercise 11.16.)

Another difference is in their primary use as linear operators. With a
stochastic matrix P satisfying P1 = 1 (total probability mass of 1 is
preserved) the key operation is the vector-matrix product

(7rk"'1)T = (wk)TP.

With mixing matrix W satisfying W1 = 1 (vector in consensus remains
in consensus) the key operation is the matrix-(stacked vector) product

Xk-‘rl _ ka.

Decentralized optimization with mixing matrices 42

Relationship with stochastic matrices

When a mixing matrix is a stochastic matrix, one can utilize the classical
Markov chain theory based on the Perron—Frobenius theorem. For
example, if W € R™ ™ is a stochastic matrix for an irreducible Markov
chain, then N'(I — W) = span(1) holds; if the Markov chain is
irreducible and aperiodic, then 1 = A; > max{|Az|,...,|An|} holds.

Decentralized optimization with mixing matrices

43

Dynamic mixing matrix

For simplicity, we assumed mixing matrices do not depend on the
iteration.

However, when the connectivity of the underlying graph is dynamic, one
has to use a series of dynamic mixing matrices instead of a fixed one.

Decentralized optimization with mixing matrices 44

Inexact decentralized methods

Consider
minimize g hi(
rERP

and a symmetric mixing matrix W € R™"*™ satisfying
N(I —W) =span(1l) and 1 = A\; > max {A2,..., A\, }. We can
equivalently write the problem as

minimize h(x)

XERMXP

subject to (I — W)x = 0.

We now consider inexact decentralized methods that solve a penalty
formulations that approximate (4). When these inexact methods

converge, they converge to an approximation of the original solution.

Decentralized optimization with mixing matrices

45

Decentralized gradient descent (DGD)
Consider the penalty formulation

1
s h Skl o
n:(lgugxlie (x) + 2a||x||I—W

We expect this formulation to approximate (4) well when o > 0 is small.

Gradient descent with stepsize « applied to this penalty formulation is

xFl=xF_q (Vh(k) 4+ ! (I - W)xk>
= Wx* — aVh(x").

We call this decentralized gradient descent (DGD) or the
combine-then-adapt method. DGD is decentralized when W is a
decentralized mixing matrix. Assume the penalty formulation has a
solution, hq, ..., h, are L-smooth, and a € (0, (1 + A\, (W))/L). Then
x* converges to a solution of the penalty formulation.

Decentralized optimization with mixing matrices

46

Diffusion

Further assume W > 0 and consider the penalty formulation

1
imize B S ixlz.
minimize (x) + za”X”W 1_g

FBS with (I +aB) (I — aA), where A=Vh, B= (W=t —-1),is

1
<M = W(xF — aVh(x")).

Note that W1 appears in the analysis and formulation of the algorithm,
but not within the iteration x**1 = W (x* — aVh(x")).

We call this diffusion or the adapt-then-combine method. Diffusion is
decentralized when W is a decentralized mixing matrix. Assume the
penalty formulation has a solution, hq,...,h, are Ly-smooth, and

a € (0,2/Ly). Then x* converges to a solution of the penalty
formulation.

Decentralized optimization with mixing matrices

47

Diffusion

The stepsize condition for diffusion az < 2/L is wider than the stepsize
condition for DGD « < (1 + A, (W))/L. Loosely speaking, use of a
larger stepsize often leads to faster convergence.

When min{As, ..., A,} > 0 does not hold, we can still use diffusion

using the positive definite mixing matrix (1 — 6)I + 6W with
0 €(0,1/(1 —min{Az,..., \n})).

Decentralized optimization with mixing matrices

48

Exact decentralized methods

Consider a symmetric mixing matrix W € R™*" satisfying
N(I —W)=span(l) and 1 = A\; > max{Aa,...,\,}. Since [— W is
symmetric positive semidefinite, there exists a U € R™*™ such that

r2=1

S —Ww).

Note, N (U) = span(1).

Consider
mlnlmlze E filx) + hi(

which is equivalent to

minimize f(x) + h(x) 4 703 (Ux).
XERNXP
We now present methods that converge to an exact solution. The
algorithms utilize W, while U is used only in the analysis.
Decentralized optimization with mixing matrices

49

PG-EXTRA

Apply Condat-Vii of Exercise 3.5 with g = d¢p} (so Proxgy- = I) to get

u*t = uf 4+ gUxt
! = Prox,s (x* — aVh(x") — aU(2u*t! —u")).
Initialize u® = 0 but set xY arbltrarlly To eliminate U, define
F=gUuk =3I -W) Z x*. Choose 3 = a~! for simplicity and
rearrange the terms to get

= Proxaf(ka —aVh(x*) —w")

whtl = wh 4 (I W)x*

where we initialize w® = 0 and set x° arbitrarily.

Decentralized optimization with mixing matrices

50

PG-EXTRA

This method is called PG-EXTRA
xF L = Prox, ; (Wx* — aVh(xF) — w")

1
whtl = wh 4 5([— W)x*.

Assume total duality holds, hq, ..., h, are L-smooth, and

0 < a< (1+Anin(W))/L. Then, x* — x*. The stepsize bound follows
from the stepsize of Condat-Vii and Apax(U?) = 1/2 — 1/2Apmin(W).
The method EXTRA is the special case of EXTRA with f = 0.

NIDS
Apply PD30 to

minimize f(x) + h(x) + 703 (Ux)

XERPXP
to get
xF 1 = Prox, s (x* — aUu® — aVh(x"))
ubtt = uk 4 U (2xk+1 —xF+a (Vh(xk) — Vh(karl))) .
Initialize u® = 0 but set x° arbitrarily. To eliminate U, define

z¥F = x¥ — aUu* — aVh(x*). Choose 3 = a~! for simplicity and
rearrange the terms to get

x" 1 = Prox, s(z")

1
2Pl = gF x4 5(1 + W) (2x" —xF + a (Vh(xF) — VA(x"T))),

where we initialize z° = x? — aVh(x?) but set x° arbitrarily.
Decentralized optimization with mixing matrices 52

NIDS

This method is called the Network InDependent Step-size (NIDS) method
xF 1 = Prox, ¢ (")

2Pl =gk x4 %(I + W) (2x" —xF + a (Vh(xF) — VA(x"T)) .

Assume total duality holds, hq,...,h, are L-smooth, and o € (0,2/L).
Then x¥ — x*. Note that the choice of a € (0,2/L) is independent of
the mixing matrix and, thus, the network topology.

Decentralized optimization with mixing matrices 53

PG-EXTRA vs. NIDS

The stepsize requirement of NIDS is more favorable than that of
PG-EXTRA. The stepsize o of PG-EXTRA is affected by the eigenvalues
of W, thus, also by the network structure. This not only limits the size of
« but also make the choice of a more difficult when the network is not
fully known. In contrast, the stepsize a of NIDS can be chosen
independently of .

On the other hand, PG-EXTRA can compute Wx* and Vh(x*)

simultaneously, but NIDS must do its corresponding steps sequentially.
Therefore, PG-EXTRA can be implemented more efficiently than NIDS.

Decentralized optimization with mixing matrices

54

PG-EXTRA vs. NIDS

In the case f =0, we can simplify the two methods to

PG-EXTRA: x"' = W(2x* — x*~1) + a(VA(x" 1) — VA(x"))
NIDS: x"1 =W (2x* — x"! + a(VA(x"1) — VR(xY))),

where W = 5(W +I). PG-EXTRA resembles DGD while NIDS
resembles diffusion.

Decentralized optimization with mixing matrices

55

	Distributed optimization with centralized consensus
	Decentralized optimization with graph consensus
	Decentralized optimization with mixing matrices

