Mathematical Machine Learning Theory, M1407.002700 E. Ryu Spring 2024

Homework 4 Due 5pm, Thursday, April 25, 2024

Problem 1: Gaussian expectations for matrix Bernstein. Let $Z \sim \mathcal{N}(0, I_{d \times d})$. Show that

$$\lambda_{\max}(\mathbb{E}[\|Z\|^2 Z Z^{\dagger}]) = 2 + d.$$

Hint. Note that if $Z = [Z_1, \dots, Z_d]^{\intercal}$, then $\mathbb{E}[Z_1] = 0$, $\mathbb{E}[Z_1^2] = 1$, $\mathbb{E}[Z_1^3] = 0$, $\mathbb{E}[Z_1^4] = 3$, and

$$(\mathbb{E}[\|Z\|^2 Z Z^{\mathsf{T}}])_{ij} = \sum_{k=1}^{d} \mathbb{E}[Z_k^2 Z_i Z_j], \quad \text{for } i, j \in \{1, \dots, d\}.$$

Problem 2: Exercise with Pseudo-inverse. Let $\Phi^{N\times d}$ and let Φ^{\dagger} be the pseudo-inverse of Φ . Show that

$$\Phi^{\dagger}(\Phi\Phi^{\dagger} - I) = 0.$$

Problem 3: Solution to ridge regression. Let $\Phi \in \mathbb{R}^{N \times d}$ and $\widehat{\Sigma} = \frac{1}{N} \Phi^{\mathsf{T}} \Phi \in \mathbb{R}^{d \times d}$. Let $\mu > 0$. Consider the optimization problem

$$\underset{\theta \in \mathbb{R}^d}{\text{minimize}} \quad \frac{1}{N} \|Y - \Phi\theta\|^2 + \mu \|\theta\|_2^2.$$

Do not make any assumptions about the rank of Φ or $\widehat{\Sigma}$.

(a) Show that

$$\hat{\theta}_{\mu} = \frac{1}{N} (\widehat{\Sigma} + \mu I)^{-1} \Phi^{\mathsf{T}} Y = (\Phi^{\mathsf{T}} \Phi + N \mu I)^{-1} \Phi^{\mathsf{T}} Y = \Phi^{\mathsf{T}} (\Phi \Phi^{\mathsf{T}} + N \mu I)^{-1} Y$$

is the unique solution to the optimization problem.

(b) Generically, if $A \in \mathbb{R}^{\ell \times m}$ and $B \in \mathbb{R}^{m \times n}$, then computing AB requires $\mathcal{O}(\ell m n)$ computation. If $C \in \mathbb{R}^{n \times n}$ is invertible, computing C^{-1} requires $\mathcal{O}(n^3)$ computation. What are the computational costs of directly computing $(\Phi^{\mathsf{T}}\Phi + N\mu I)^{-1}\Phi^{\mathsf{T}}Y$ and $\Phi^{\mathsf{T}}(\Phi\Phi^{\mathsf{T}} + N\mu I)^{-1}Y$?

Hint. For (a), use the matrix inversion lemma.

Problem 4: Cocoercivity inequality from L-smoothness. Let $F: \mathbb{R}^d \to \mathbb{R}$ be L-smooth convex with $0 < L < \infty$. Show that

$$\langle \nabla F(\theta) - \nabla F(\eta), \theta - \eta \rangle \ge \frac{1}{L} \|\nabla F(\theta) - \nabla F(\eta)\|^2, \quad \forall \theta, \eta \in \mathbb{R}^d.$$

Problem 5: Strong monotonicity inequality from μ -convexity. Let $F: \mathbb{R}^d \to \mathbb{R}$ be differentiable and μ -strongly convex with $0 < \mu < \infty$. Show that

$$\langle \nabla F(\theta) - \nabla F(\eta), \theta - \eta \rangle \ge \mu \|\theta - \eta\|^2, \quad \forall \theta, \eta \in \mathbb{R}^d.$$

Problem 6: Distance to solution \Rightarrow function-value suboptimality. Let $0 < L < \infty$. Let $F: \mathbb{R}^d \to \mathbb{R}$ be L-smooth convex with minimizer θ^* . Assume we have shown a guarantee of

$$\|\theta^k - \theta^\star\|^2 \le h(k) \|\theta^0 - \theta^\star\|^2$$

for $k = 0, 1, \ldots$, where $h: \mathbb{N} \to [0, \infty)$. Show that

$$F(\theta^k) - F(\theta^*) \le \frac{Lh(k)}{2} \|\theta^0 - \theta^*\|^2$$

for k = 0, 1,

Problem 7: Quadratic objectives only need symmetric matrices. Let

$$F(\theta) = \theta^{\mathsf{T}} H \theta + b^{\mathsf{T}} \theta + c,$$

where $H \in \mathbb{R}^{d \times d}$, $b \in \mathbb{R}^d$, and $c \in \mathbb{R}$. Show that

$$F(\theta) = \frac{1}{2}\theta^{\mathsf{T}}(H + H^{\mathsf{T}})\theta + b^{\mathsf{T}}\theta + c.$$

Problem 8: Convex quadratic objectives. Let

$$F(\theta) = \frac{1}{2}\theta^{\mathsf{T}}H\theta + b^{\mathsf{T}}\theta + c,$$

where $H = H^{\intercal} \in \mathbb{R}^{d \times d}$, $b \in \mathbb{R}^d$, and $c \in \mathbb{R}$.

- (a) Show that $F(\theta)$ is convex if and only if $H \succeq 0$.
- (b) Show that if H has a negative eigenvalue, then $\inf_{\theta \in \mathbb{R}^d} F(\theta) = -\infty$.

Problem 9: Quadratic objectives in standard form. Let

$$F(\theta) = \frac{1}{2}\theta^{\mathsf{T}}H\theta + b^{\mathsf{T}}\theta + c,$$

where $H = H^{\dagger} \in \mathbb{R}^{d \times d}$ is <u>strictly</u> positive definite, $b \in \mathbb{R}^d$, and $c \in \mathbb{R}$. Show that there exists some $\theta^* \in \mathbb{R}^d$ and $c' \in \mathbb{R}$ such that

$$F(\theta) = \frac{1}{2} (\theta - \theta^*)^{\mathsf{T}} H(\theta - \theta^*) + c'.$$