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Problem 1: Numerical resolution of LS. When solving the least squares problem in practice,
it is more efficient to use the QR decomposition than to use the SVD. Given ® € RV*? with
full column rank, the QR factorization has the form

& = QR,

where Q@ € RV*? contains orthonormal columns and R € R%*? is upper triangular. Show the
following.

(a) R has non-zero diagonal components, i.e., R; # 0 for i =1,...,d.

(b) Assuming ® = @R, has already been computed, propose an algorithm for computing
6 = ®'Y for Y € RN. The algorithm may not use a matrix inverse or utilize any matrix
decomposition aside from the already computed QR decomposition.

Problem 2: Linear regression in the random design setting is harder than the fized design
setting. Consider the least square estimator

6= (dTP)" T,
Recall that the expected excess risk of the least-squares estimator is

B[R() - R = TF

for the fixed design setting, where we assume 5= %@TCD is invertible, and
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for the random design setting, where we assume ¥ is invertible almost surely and & = Ex [¢(X)¢(X)T]
is invertible. Show that ) )
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—E[Tr(ZX7)] > —.

T E[T(2S )] >
You may use the following fact without proof: The mapping M > Tr(M~!) is convex on the
set of symmetric positive definite matrices. Do not assume ¢(X;) is Gaussian.

Hint. Define Z = ®%~1/2 as in the lecture, and use Jensen on E[Tr(Z72)~1].



Problem 3: Conver functions have convex sublevel sets. Let f: R? — R U {co}. Define the

a-sublevel set of f as
Co = {z e RY| f(z) < a}.

Show that if f is convex as a function, then C,, is convex as a set.

Problem 4: Convex functions have convex epigraphs. Let f: R? — R U {oo}. Define the
epigraph of f as
epi(f) = {(z,1) | f(x) <t, € R t € R} C R

Show that f is convex as a function if and only if epi(f) is convex as a set.

Problem 5: Convezity of mazimum eigenvalues. Show that Apnax, as a function on the set of
symmetric matrices, is convex.

Hint. Use Apax(M) = SUp||y|=1 VT M.

Problem 6: Projection onto convex sets is well defined. Let A C R% be a nonempty closed
convex set and let p € R%. Show that

argmin ||z — pl|z,
€A

where || - |2 denotes the Euclidean norm, exists and is unique.

Hint. For uniqueness, show that f(z) = ||z — p||* is strictly conver function and then argue

that if z, 2’ € A are two distinct minimizes, then %:c + %x’ € A would be closer to p.

Problem 7: A subgradient may not exist on the boundary of the domain. Let f: [0,00) — R
defined by f(x) = —\/x. Show that f does not have a subgradient at = = 0, i.e., there is no g
such that

fly) > f(0)+g-y, Vyel0,00).

Problem 8: A subgradient provides a cutting plane for argmin f. Let f: R? — R U {oo} be
convex. Show the following.

(a) If g € Of(z) and g # 0, then
argmin f C {y € R| g7y < gTa}.
(b) If f is differentiable, and g = V f(z) # 0, then

argmin f C {y € R?| gTy < gTz}.



Problem 9: Closure of convex set is convex. Let C C R% be a convex set, and let C C R% be
its closure. (Closure in the sense of open sets and closed sets.) Show that C' is convex.

Problem 10: Strict separating hyperplane theorem. Let C C R? be a nonempty open convex
set. Let p € R? be such that p ¢ C. Then, there is a non-zero v € R? such that

vle <v'p, Vzel.

Hint. Consider the two cases p ¢ dC and p € 9C and work with C.

Problem 11: Ezpectation on a convez set is in the convex set. Let C' C R? be a nonempty open
convex set. Let X € R? be a random variable such that X € C almost surely and E[X] € R? is
well defined. Show that E[X] € C.

Hint. Assume for contradiction that E[X] ¢ C. Then there is a strict separating hyperplane
between E[X] and C given by v. Consider E[vTX].

Remark. The statement holds even if C' is a nonempty convex set (not necessarily open). The
proof of the general case involves extending the arguments of this exercise using the notion of
relative interiors.

Problem 12: Jensen for ¢ with open convex domain. Let C' C R? be a nonempty open convex
set. Let X € R? be a random variable such that X € C almost surely and E[X] € R? is well
defined. Let ¢: C — R be convex. Show that

p(E[X]) < Elp(X))].

Remark. Jensen’s inequality holds even if C' is a nonempty convex set (not necessarily open).
The proof of the general case involves extending the arguments of this exercise using the notion
relative interiors.



