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“In mathematics, a kernel is an object to which the author assigns
the name K.” — Jan 6, 2022, Sam Power (@sp monte carlo)1

1https://twitter.com/sp monte carlo/status/1478783658714673159
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Linear learning with nonlinear features

Consider the setup with ϕ : X → Rd, where d may be smaller or larger
than the “dimension” of X . (We later consider infinite d.)

Consider
minimize

θ
E

(X,Y )∼P
[ℓ(fθ(X), Y )],

where fθ is a linear2 prediction function

fθ(·) = ⟨θ, ϕ(·)⟩ =
d∑

i=1

θiϕi(·)

and ⟨·, ·⟩ denotes the standard inner product in Rd.

Equivalently, consider the dataset

(X̆1, Y1), . . . , (X̆N , YN ),

with X̆i = ϕ(Xi), and fθ(Xi) = ⟨θ, X̆i⟩.
2Linear in the parameters θ, but nonlinear in the input X.



Absorbing bias into linear weights

What if we want a bias? So, what if we want to learn

fθ,b(·) = ⟨θ, ϕ(·)⟩+ b.

Define

ϕ̃(·) =
[
ϕ(·)
1

]
∈ Rd+1, θ̃ =

[
θ
b

]
∈ Rd+1

and note
f̃θ̃(·) = ⟨θ̃, ϕ̃(·)⟩ = fθ,b(·).

Trick: Absorb bias into linear weights.
WLOG, consider fθ(·) = ⟨θ, ϕ(·)⟩ without biases.
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Kernel SGD

Training with linear fθ:

minimize
θ

E
(X,Y )∼P

[ℓ(θ · ϕ(X), Y )].

In ML and DL applications, ℓ(·, y) is often convex in its first input (for
fixed y). E.g., MSE and cross-entropy losses. Therefore, training is a
convex optimization problem.

Therefore we can establish global convergence guarantees for SGD:

i(k) ∼ Uniform{1, . . . , N}
θk+1 = θk − αkℓ

′(θk · ϕ(Xi(k)), Yi(k))ϕ(Xi(k)).
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Decision boundaries linear in ϕ, nonlinear in X

Linear classifiers yield decision boundaries that are linear in the features.

Most ML tasks are nonlinear in X, and features nonlinear in X are
needed to perform classification well.
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Feature map (ϕ) → Kernel (K) and RKHS (H)

Consider ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕd(x)) Assume ϕ1, . . . , ϕd are
linearly independent as functions. Consider K : X × X → R defined as

K(x′, x) = ⟨ϕ(x), ϕ(x′)⟩Rd .

Let
H = span{ϕk}dk=1.

For any

f =

d∑
k=1

αkϕk ∈ H, g =

d∑
k=1

βkϕk ∈ H,

define the inner product

⟨f, g⟩H =

d∑
k=1

αkβk.

Then, H is a finite-dimensional Hilbert space.
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Reproducing property

Our ⟨·, ·⟩H makes {ϕ1, . . . , ϕd} an orthonormal basis of H.
If f(·) =

∑d
k=1 αkϕk(·), then

⟨f(·), ϕk(·)⟩H = αk

for k = 1, . . . , d.

Note that

K(·, x) =
d∑

k=1

ϕk(x)ϕk(·) ∈ H

for all x ∈ X .
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Reproducing property

K has the reproducing property with respect to ⟨·, ·⟩H:

If f(·) =
∑d

k=1 αkϕk(·), then

⟨f,K(·, x)⟩H =

〈
f(·),

d∑
k=1

ϕk(x)ϕk(·)

〉
H

=

d∑
k=1

ϕk(x) ⟨f(·), ϕk(·)⟩H

=

d∑
k=1

αkϕk(x) = f(x),

i.e., inner product with K(·, x) is evaluation at x. To put it differently
yet,

⟨·,K(·, x)⟩H : H → R
is the point evaluation (linear) operator at point x.

We say K is a reproducing kernel of H.
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Example: Polynomial space

Let X = R. Let

ϕ(x) =



1
x
x2

x3

...
xd−1


.

Then,
H = {Polynomials of degree < d}

and ⟨·, ·⟩H is the Rd-inner product of the monomial coefficients.

The kernel is

K(x′, x) = ⟨ϕ(x), ϕ(x′)⟩Rd =

d∑
i=1

(x)i−1(x′)i−1.
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Connection to 2-layer neural networks

Let X = Rn. Let ϕ1, . . . , ϕd be defined as

ϕk(x) = σ(a⊺kx+ bk)

for k = 1, . . . , d. Then

H =

{
d∑

k=1

ukσ(a
⊺
kx+ bk) |u1, . . . , ud ∈ R

}
,

i.e., H is the set of 2-layer nerual networks with hidden layer weights and
biases fixed to a1, . . . , ad and b1, . . . , bd.

Performing kernel SGD corresponds to training the output layer weights
of a 2-layer neural network with the hidden layer weights and biases fixed
(and not trained).
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Feature engineering

Feature engineering is the task of choosing (often hand-crafting) ϕ for a
given ML task.

There was a time when ML was primarily about feature engineering.3

In modern deep learning, features are learned.

3One can argue that in modern machine learning practice, feature engineering is
still the main engineering challenge.
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Learning features with deep neural networks

Let θ = (θ(1), θ(2)) and let

fθ(x) = ⟨θ(1), ϕθ(2)(x)⟩.

In other words, fθ is a deep neural network, θ(1) is the trainable
parameters for the output linear layer (FC1), and θ(2) is the trainable
parameters for the earlier layers.

A deep neural network uses a prediction function non-linear in its
parameter θ. Most modern deep neural networks have this form.

However, if θ(2) is fixed, then fθ is linear in θ(1). Deep learning can be
interpreted as a process in which the feature mapping ϕθ(2) is learned
along with its linear weights θ(1).
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Kernel: Definition

Let X be a nonempty set. Let K : X × X → R. We say K is symmetric
if K(x′, x) = K(x, x′) for all x, x′ ∈ X . Given N ∈ N and
x1, . . . , xN ∈ X , let G ∈ RN×N be

Gij = K(xi, xj), i, j ∈ {1, . . . , N}.

We call G the kernel matrix or the Gramian matrix of K. Then K is a
positive definite kernel (PDK) if G is symmetric positive semidefinite for
any N ∈ N and x1, . . . , xN ∈ X . Equivalently, K is positive definite if it
is symmetric and

N∑
i=1

N∑
j=1

cicjK(xi, xj) ≥ 0

for all N ∈ N, x1, . . . , xN ∈ X and c ∈ RN .

We discuss the building blocks of PDKs. This machinery will allow us to
construct PDKs and identify PDKs.
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Strictly positive definite kernels

The inconsistent naming warrants some clarification. A matrix
G ∈ RN×N is symmetric positive definite if all eigenvalues are strictly
positive (>) and symmetric positive semidefinite if all eigenvalues are
nonnegative (≥). In contrast, a strictly positive definite kernel, as
defined below, refers to the strict notion (>) while positive definite
kernels correspond to the non-strict notion (≥).

We say K : X × X → R is a strictly positive definite kernel if for any
N ∈ N and distinct x1, . . . , xN ∈ X , the corresponding Gramian matrix
G is symmetric (strictly) positive definite. Equivalently, K is strictly
positive definite if it is symmetric and

N∑
i=1

N∑
j=1

cicjK(xi, xj) > 0

for all N ∈ N, distinct x1, . . . , xN ∈ X , and nonzero c ∈ RN .
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Inner products of feature maps

Let ϕ : X → H for some Hilbert space H (not necessarily an RKHS)
equipped with inner product ⟨·, ·⟩H and induced norm ∥ · ∥H. Then,
K : X × X → R defined as

K(x′, x) = ⟨ϕ(x), ϕ(x′)⟩H

is a PDK, since, for all N ∈ N, x1, . . . , xN ∈ X , and c ∈ RN ,

N∑
i=1

N∑
j=1

cicjK(xi, xj) =

N∑
i=1

N∑
j=1

cicj⟨ϕ(xi), ϕ(xj)⟩H

=

〈
N∑
i=1

ciϕ(xi),

N∑
j=1

cjϕ(xj)

〉
H

=

∥∥∥∥∥
N∑
i=1

ciϕ(xi)

∥∥∥∥∥
2

H

≥ 0.
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Example: Linear kernel

The simplest instance is X = Rd, H = Rd, ϕ(x) = x, and

K(x′, x) = ⟨x, x′⟩Rd .
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Example: Tensor product

Let f1, . . . , fd be functions from X to R. Then, K : X × X → R

K(x′, x) =

d∑
i=1

fi(x)fi(x
′)

is a PDK. Using the notation of tensor products, which we further discuss
later, we can equivalently write

K =

d∑
i=1

fi ⊗ fi.

(Analogous to expressing a matrix as a sum of d rank-1 outer products.)

Proof. The sum of d tensor products is an instance of a PDK defined
through the feature map

ϕ(x) =


f1(x)
f2(x)

...
fd(x)

 ∈ Rd.
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Example: Min kernel

Let X = [0,∞). Then, K : X × X → R defined as

K(x′, x) = min(x, x′)

is a PDK.

Proof. For L2(R) = {f : R→ R | (
∫
|f(x)|2dx)1/2 <∞}, let

ϕ : X → L2(R) be defined by ϕ(x) = 1[0,x]. Then

K(x′, x) = ⟨ϕ(x), ϕ(x′)⟩L2(R) = ⟨1[0,x],1[0,x′]⟩L2(R) = min(x, x′).
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Operations preserving PDKs

Given simple PDKs, we can construct more complex PDKs through
operations preserving positive definiteness.

Let K1 and K2 be PDKs mapping X × X to R. Then
▶ αK1 for any α ≥ 0

▶ K1 +K2

▶ K1K2

are PDKs. The first two claims are clear. The third claim means
K3 : X × X → R defined by

K3(x
′, x) = K1(x

′, x)K2(x
′, x), ∀x, x ∈ X

is PDK, and it follows from the Schur product theorem.
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Schur product theorem

Theorem
Let A ∈ RN×N and B ∈ RN×N be symmetric positive semidefinite.
Then the Hadamard product C = A⊙B, defined by Cij = AijBij for
i, j ∈ {1, . . . , N}, is symmetric positive semidefinite.

Proof. Let

A =

N∑
i=1

λiuiu
⊺
i , B =

N∑
i=1

νiviv
⊺
i

be the eigenvalue decompositions of A and B with respective
orthonormal eigenvectors u1, . . . , uN and v1, . . . , vN . Since ⊙ is bilinear,

C = A⊙B =

(
N∑
i=1

λiuiu
⊺
i

)
⊙

 N∑
j=1

νjvjv
⊺
j


=

N∑
i=1

N∑
j=1

λiνj (uiu
⊺
i )⊙

(
vjv

⊺
j

)
=

N∑
i=1

N∑
j=1

λiνj(ui ⊙ vj)(ui ⊙ vj)
⊺

is a sum of N2 (rank-0 or rank-1) symmetric positive semidefinite
matrices and therefore is symmetric positive semidefinite.



Sums and integrals of PDKs

Let {Ki}i∈N be a sequence of PDKs mapping X × X to R. If

K∞(x′, x) =

∞∑
i=1

Ki(x
′, x)

finitely exists for all x, x′ ∈ X , then K∞ is a PDK. Let {Kw}w∈W be a
family of PDKs mapping X × X to R. Let µ be a nonnegative measure
on W. If

K(x′, x) =

∫
W

Kw(x
′, x) dµ(w)

is well-defined (measurable and finitely integrable) for all x, x′ ∈ X , then
K is a PDK.

Proof.

N∑
i=1

N∑
j=1

cicjK(xi, xj) =

∫
W

N∑
i=1

N∑
j=1

cicjKw(xi, xj)︸ ︷︷ ︸
≥0

dµ(w) ≥ 0.
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Example: Polynomial kernel

Let X = Rd and p ∈ N. Then, K : Rd × Rd → R defined as

K(x′, x) = (⟨x, x′⟩+ 1)p

is a PDK.
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Example: Exponential kernel

Let X = Rd. Then, K : Rd × Rd → R defined as

K(x′, x) = exp(⟨x, x′⟩) =
∞∑
p=0

1

p!
(⟨x, x′⟩)p.

is a PDK.
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Example: Cosine kernel

Let X = R. Then, K : X × X → R defined as

K(x′, x) = cos(x− x′) = cos(x) cos(x′) + sin(x) sin(x′)

is a PDK.
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Example: Kernels with integers

Let X = N. Then, K : N× N→ N defined as

K(x′, x) = 2xx
′
= e(log 2)xx′

is PDK.

(The point is that the theory of kernels are applicable to non-vector data
types X . There are also kernels for strings of variable lengths for NLP
applications.)
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Reproducing kernel Hilbert space (RKHS)

Let X be a nonempty set (No further assumption on X yet). Let H be a
(real) Hilbert space of functions f : X → R equipped with inner product
⟨·, ·⟩H and induced norm ∥ · ∥H. By definition, ∥f∥H = 0 if and only if
f(x) = 0 for all x ∈ X .4

K : X × X → R is a reproducing kernel (RK) of H if

K(x, ·) ∈ H, ∀x ∈ H,

and K has the reproducing property

f(x) = ⟨f,K(x, ·)⟩H, ∀x ∈ X , f ∈ H.

If H has an RK, it is a reproducing kernel Hilbert space (RKHS).

4Clarification on next slide.
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RKHS vs. Lp spaces

To clarify, H is a space functions, not a space of equivalence classes of
functions. Therefore, the point evaluation f(x) is well defined for any
x ∈ X .

If f ∈ L2, then f is not a single function, but rather a set of functions
that differ only on a set of measure 0, and the point evaluation f(x) is
undefined. (

∫
B(x,ε)

f(x) dx is well defined, but f(x) is undefined.)
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RKHS vs. Lp spaces

RKHS function spaces (rather than Lp spaces) are how people think
about functions in machine learning theory.

The output of an ML algorithm is a prediction function f̂ (and we use f̂
for point evaluations, not integrals). RKHS is the class of Hilbert spaces
on which point evaluation is continuous.

Therefore, the requirements of RKHSs that the evaluation functional is
continuous is a natural requirement, provided that you insist on working
with Hilbert spaces. (Some recent research tries to understand deep

learning as finding f̂ within Banach spaces.)
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Example: Band-limited L2 functions

Let B > 0 and X = R. Let

H =

{
f : R→ R

∣∣∣∣ ∫
R\[−B,B]

|f̂(ω)|2 dω = 0, ∥f∥H <∞

}

⟨f, g⟩H =

∫
R
f(x)g(x) dx =

1

2π

∫ B

−B

f̂(ω)ĝ(ω) dω

be the Hilbert space of band-limited L2 functions.

Then, H is an RKHS with RK

K(x′, x) = 2Bsinc(B(x− x′)) =
1

2π

∫
R
e−iωx′

eiωx1[−B,B](ω) dω.

To see why, note that K̂(x, ·)(ω) = eiωx1[−B,B](ω), so K(x, ·) ∈ H for
all x ∈ R, and

⟨f,K(x, ·)⟩H =
1

2π

∫ B

−B

f̂(ω)e−iωx dω =
1

2π

∫
R
f̂(ω)e−iωx dω = f(x),

so K has the reproducing property.



Continuity of point evaluation

RKHSs can be equivalently defined by continuity of point evaluation.

Theorem
Let X be a nonempty set. Let H be a Hilbert space of functions from X
to R. H is an RKHS if and only if the evaluation functional Lx, defined
as Lx[f ] = f(x), is bounded (continuous) for all x ∈ X .
Proof. Assume H is an RKHS. For any x ∈ X ,

|Lx[f ]| = |⟨f,K(x, ·)⟩H| ≤ ∥f∥H∥K(x, ·)∥H, ∀ f ∈ H

and ∥K(x, ·)∥H <∞ since K(x, ·) ∈ H. So Lx is bounded.5

Next, assume Lx : H → R is bounded in H. By the Riesz representation
theorem, there exists a hx ∈ H such that

Lx[f ] = ⟨hx, f⟩H, ∀ f ∈ H.

Let K(x′, x) = hx(x
′) for all x, x′ ∈ X .

5“Bounded” means bounded/continuous linear operator.



Kernel (K) ⇔ RKHS (H)

There is a one-to-one correspondence between PDKs and RKHS.

First, establish uniqueness: If a H exists for a K, then it is unique.
and if a K exists for a H, then it is unique.

Theorem
If H is an RKHS, its reproducing kernel K : X × X → R is unique.

Proof. Let K and K ′ be two RK of an RKHS H. Then for any x ∈ X ,

∥K(x, ·)−K ′(x, ·)∥2H
= ⟨K(x, ·)−K ′(x, ·),K(x, ·)−K ′(x, ·)⟩H
= ⟨K(x, ·),K(x, ·)−K ′(x, ·)⟩H − ⟨K ′(x, ·),K(x, ·)−K ′(x, ·)⟩H
= K(x, x)−K ′(x, x)−K(x, x) +K ′(x, x)

= 0.

Therefore, K = K ′.
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Kernel (K) ⇔ RKHS (H)

First, establish uniqueness: If a K exists for a H, then it is unique.

Theorem
If K : X × X → R is a reproducing kernel, its Hilbert space H is unique.

Proof. Let H be an RKHS of a reproducing kernel K. Since
K(x, ·) ∈ H for all x ∈ X , we have

S = span{K(x, ·) |x ∈ X} ⊆ H

and S ⊆ H. We claim S = H, which holds if and only if 0 is the only
element in H orthogonal to all vectors in S. Indeed, if h ∈ H satisfies

⟨h,K(x, ·)⟩ = 0, ∀x ∈ X ,

then h(x) = 0 for all x ∈ X , by the reproducing property, and h = 0.
Since, any RKHS of K is precisely characterized by S = H, it is
unique.
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Kernel (K) ⇔ RKHS (H)

We now complete the proof of the one-to-one correspondence by showing
existence: There exists a H exists for a K; and there exists a K for a H.

Theorem (Moore–Aronszajn Theorem)
Let X be a nonempty set. Then K : X × X → R is a PDK if and only if
it is an RK of an RKHS H.
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Proof. (⇐) Assume K is an RK of an RKHS H. Then K is symmetric,
since K(x′, x) = ⟨K(x, ·),K(x′, ·)⟩H = ⟨K(x′, ·),K(x, ·)⟩H = K(x, x′)
for all x, x′ ∈ X . Moreover, for any N ∈ N, x1, . . . , xN ∈ X , and
c ∈ RN , we have

N∑
i=1

N∑
j=1

cicjK(xi, xj) =

N∑
i=1

N∑
j=1

cicj⟨K(xi, ·),K(xj , ·)⟩H

=

〈
N∑
i=1

ciK(xi, ·),
N∑
j=1

cjK(xj , ·)

〉
H

=

∥∥∥∥∥
N∑
i=1

ciK(xi, ·)

∥∥∥∥∥
2

H

≥ 0.

So K is a PDK.
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(⇒) Let K : X × X → R be a PDK. Define H0 to be the (not
necessarily complete) vector space

H0 = span{K(x, ·) |x ∈ X}

=

{
N∑
i=1

αiK(xi, ·)
∣∣∣N ∈ N, x1, . . . , xN ∈ X , α1, . . . , αN ∈ R

}
.

For

f(·) =
N∑
i=1

αiK(xi, ·), g(·) =
N ′∑
i=1

βiK(x′
i, ·),

define

⟨f, g⟩H0 =

N∑
i=1

N ′∑
j=1

αiβjK(xi, x
′
j)

=
N∑
i=1

αi

N ′∑
j=1

βjK(xi, x
′
j)︸ ︷︷ ︸

=g(xi)

=

N ′∑
j=1

βj

N∑
i=1

αiK(xi, x
′
j)︸ ︷︷ ︸

=f(x′
j)
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Clearly, ⟨·, ·⟩H0
: H0 ×H0 → R is symmetric and bilinear. The value of

⟨·, ·⟩H0
is independent of the representation of f via

x1, . . . , xN , α1, . . . , αN and g via x′
1, . . . , x

′
N ′ , β1, . . . , βN ′ , since

⟨f, g⟩H0 =

N∑
i=1

αig(xi) =

N ′∑
j=1

βjf(x
′
j).

(So ⟨·, ·⟩H0
is well-defined.) Since K is a PDK, we have

⟨f, f⟩H0
= α⊺Gα ≥ 0, where α = (α1, . . . , αN ) and G ∈ RN×N is the

kernel matrix for x1, . . . , xN . So ⟨·, ·⟩H0
is a semi-inner product (it is an

inner product, but we have so far shown that it is a semi-inner product.)
so Cauchy–Schwartz inequality holds. We have the reproducing property

⟨f,K(x, ·)⟩H0
=

N∑
i=1

αiK(xi, x) = f(x), ∀x ∈ X , f ∈ H0.

Therefore,

|f(x)| ≤ |⟨f,K(x, ·)⟩H0
| ≤ ∥f∥H0

∥K(x, ·)∥H0
≤ ∥f∥H0

√
K(x, x),

and ∥f∥H0 = 0 implies f(x) = 0 for all x ∈ X , i.e., f = 0. Therefore, H0

is a pre-Hilbert space (a vector space equipped with an inner product).



Pointwise convergence and definition of H

We complete H0 to get H by considering Cauchy sequences in H0.

Let {fk}k∈N ⊂ H0 be a Cauchy sequence with respect to the
∥ · ∥H0

-norm. For any x ∈ X ,

|fm(x)− fn(x)| = |⟨fm − fn,K(x, ·)⟩H0
|

≤ ∥fm − fn∥H0
∥K(x, ·)∥H0

= ∥fm − fn∥H0

√
K(x, x)

→ 0

as min{m,n} → ∞. So, for all x ∈ X , {fk(x)}k∈N ⊂ R is a Cauchy
sequence and converges to a limit. We define f∞ : X → R to be the
pointwise limit of {fk}k∈N, i.e.,

f∞(x) = lim
k→∞

fk(x).

We define H as the space of all pointwise limits of Cauchy sequences in
H0. Clearly, H is a vector space. Moreover, H0 ⊆ H, since for any
f ∈ H0, the Cauchy sequence fk = f for all k has the limit f .
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Definition of ⟨·, ·⟩H
Let f∞, g∞ ∈ H with Cauchy sequences {fk}k∈N ⊂ H0 and
{gk}k∈N ⊂ H0 respectively converging to them. Define

⟨f∞, g∞⟩H = lim
k→∞

⟨fk, gk⟩H0
.

For ⟨·, ·⟩H0
to be well defined, the limit must exist and the limit must not

depend on the Cauchy sequence converging to f∞, g∞ ∈ H. First,
|⟨fm, gm⟩H0

− ⟨fn, gn⟩H0
| = |⟨fm − fn, gm⟩H0

− ⟨fn, gn − gm⟩H0
|

≤ |⟨fm − fn, gm⟩H0
|+ |⟨fn, gn − gm⟩H0

|
≤ ∥fm − fn∥H0

∥gm∥H0
+ ∥fn∥H0

∥gn − gm∥H0
→ 0

as min{m,n} → ∞. (Note {fk}k∈N ⊂ H0 and {gk}k∈N ⊂ H0 are
bounded since Cauchy.) Next, let {f ′

k}k∈N ⊂ H0 and {g′k}k∈N ⊂ H0 also
be Cauchy sequences respectively converging to f∞ and g∞. Then

|⟨fn, gn⟩H0
− ⟨f ′

n, g
′
n⟩H0

| = |⟨fn − f ′
n, gn⟩H0

− ⟨f ′
n, g

′
n − gn⟩H0

|
≤ |⟨fn − f ′

n, gn⟩H0
|+ |⟨f ′

n, g
′
n − gn⟩H0

|
≤ ∥fn − f ′

n∥H0
∥gn∥H0

+ ∥f ′
n∥H0

∥g′n − gn∥H0
→ 0.
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⟨·, ·⟩H is an inner product

That ⟨·, ·⟩H is symmetric and bilinear is clear. Also, ∥ · ∥H is nonnegative,
since

∥f∞∥H = lim
k→∞

∥fk∥H0
≥ 0

for {fk}k∈N ⊂ H0 converging to f∞. For ⟨·, ·⟩H to be an inner product
on H, it remains to verify positive definiteness of ∥ · ∥H, i.e., that
∥f∞∥H = 0 only if and only if f∞(x) = 0 for all x ∈ X .
If f∞ = 0, then ∥f∞∥H = 0 since 0 ∈ H0 and {fk}k∈N ⊂ H0 with
fk = 0 converges to f∞ = 0. Conversely, assume {fk}k∈N ⊂ H0

converges to f∞ and ∥f∞∥H = 0. Then, for any x ∈ X ,

|f∞(x)| =
∣∣∣∣ limk→∞

fk(x)

∣∣∣∣ = ∣∣∣∣ limk→∞
⟨fk,K(x, ·)⟩H0

∣∣∣∣ ≤ lim
k→∞

∥fk∥H0
∥K(x, ·)∥H0

.

Since ∥fk∥H0 → ∥f∥H = 0, we conclude f∞(x) = 0 for all x ∈ X .
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H is complete

While Cauchy sequences in H0 have limits H by definition, it remains to
establish that Cauchy sequences in H have a limit in H.

Let f
(1)
∞ , f

(2)
∞ , . . . be a Cauchy sequence in H, and let

{f (1)
k }k∈N, {f (2)

k }k∈N, . . . be Cauchy sequences in H0 with respective

limits f
(1)
∞ , f

(2)
∞ , . . . . Let {k(j)}j∈N ⊆ N be a sequence such that

∥f (j)
k(j) − f

(j)
∞ ∥ → 0 as j →∞. Then

∥f (i)
k(i) − f

(j)
k(j)∥H0

= ∥f (i)
k(i) − f

(j)
k(j)∥H

≤ ∥f (i)
k(i) − f (i)

∞ ∥H + ∥f (i)
∞ − f (j)

∞ ∥H + ∥f (j)
∞ − f

(j)
k(j)∥H

→ 0

as min{i, j} → ∞. Therefore, {f (j)
k(j)}j∈N is a Cauchy sequence in H0

and it has a limit f ∈ H. Finally,

∥f − f (j)
∞ ∥H ≤ ∥f − f

(j)
k(j)∥H + ∥f (j)

k(j) − f (j)
∞ ∥H → 0

as j →∞. Since the Cauchy sequence f
(1)
∞ , f

(2)
∞ , . . . in H converges to a

limit f in H, we conclude H is complete.



K is an RK for H

We have established that K has the reproducing property for H0 and
that K(x, ·) ∈ H0 ⊆ H for all x ∈ X . It remains to show that K has the
reproducing property for all of H. Let f∞ ∈ H and let {fk}k∈N ⊂ H0 be
a Cauchy sequence converging to f∞. Then

fk(x)︸ ︷︷ ︸
→f∞(x)

= ⟨fk,K(x, ·)⟩H0︸ ︷︷ ︸
→⟨f∞,K(x,·)⟩H

.
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RKHS norm quantifies smoothness

The norm of a function in an RKHS controls how fast the function varies
over X with respect to the (pseudo-)metric dK , defined below.

Alternatively, one says, ∥f∥H quantifies the “smoothness” or
“complexity” of f . In the context of machine learning and optimization,
“smoothness” often refers to the variation of the function, and does not
directly refer to (infinite) differentiability. Specifically, for f ∈ H,

|f(x)− f(x′)| = |⟨f,K(x, ·)−K(x′, ·)⟩H|
≤ ∥f∥H∥K(x, ·)−K(x′, ·)∥H
= ∥f∥HdK(x′, x),

so f is ∥f∥H-Lipschitz continuous as a map from (X , dK) to (R, | · |).
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Bochner’s theorem

Let X = Rd. We say K : Rd × Rd → R is shift-invariant if there exists a
function κ : Rd → R such that

K(x′, x) = κ(x− x′).

Theorem (Bochner)
Let x ∈ X = Rd. Then, K(x′, x) = κ(x− x′) is a PDK if and only if

κ(t) =

∫
Rd

e−iω⊺tdµ(ω)

for some (real) nonnegative finite measure µ ∈M+(Rd).

Proof of (⇐).

K(x′, x) =

∫
Rd

e−iω⊺(x−x′) dµ(ω) = ℜ
∫
Rd

e−iω⊺(x−x′) dµ(ω)

=

∫
Rd

cos(ω⊺(x− x′))dµ(ω) =

∫
Rd

(cos(ω⊺x) cos(ω⊺x′) + sin(ω⊺x) sin(ω⊺x′)) dµ(ω).

We omit (⇒) since it requires more work and we do not use it.
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Example: Sinc kernel

Let B > 0 and X = R. Then, K : R× R→ R defined as

K(x′, x) = 2Bsinc(B(x− x′)) =

{
2 sin(B(x−x′))

(x−x′) if x ̸= x′

0 if x = x′

is a PDK, since

2Bsinc(B(t)) =

∫
R
e−iωt1[−B,B](ω) dω.

Shift invariant kernels 49



Example: 1-D Gaussian kernel

Let σ > 0 and X = R. Then, K : R× R→ R defined as

K(x′, x) = e−
(x−x′)2

2σ2

is a PDK, since

K(x′, x) = e
xx′
σ2︸︷︷︸

exponential kernel

e−
(x)2

2σ2 e−
(x′)2

2σ2︸ ︷︷ ︸
tensor product

.

Alternatively, we can conclude K is PDK through

e−
t2

2σ2 =
σ√
2π

∫
R
e−iωte−

σ2ω2

2 dω.
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Example: Gaussian kernel with covariance matrix

Let Σ ∈ Rn×n be symmetric positive definite. Then

K(x′, x) = exp
(
− (x− x′)⊺Σ−1(x− x′)

2

)
is a PDK.

Justification in homework.
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Example: 1-D Laplace kernel

Let γ > 0 and X = R. Then, K : R× R→ R defined as

K(x′, x) =
1

2
e−γ|x−x′|

is a PDK, since

1

2
e−γ|t| =

1

2π

∫
R
e−iωt γ

γ2 + ω2
dω.

(Integral can be evaluated via contour integration.)
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Example: Laplace kernel

Let

κ(x) = exp(−∥x− x′∥2
r

)

Then, one can show that

κ̂(ω) = 2dπd−1Γ((d+ 1)/2)
rd

(1 + r2∥ω∥22)(d+1)/2

Note that
1

κ̂(ω)
∝ (1 + r2∥ω∥22)(d+1)/2
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Explicit construction of norm for shift-invariant RKHS

We now informally derive the RKHS norm and inner product
corresponding to shift-invariant PDKs.

Let
K(x′, x) = κ(x− x′)

be PDK. (So κ̂ is nonnegative.) Assume κ ∈ L1, which implies that κ̂
exists. Then

K(x′, x) =
1

(2π)d

∫
Rd

√
κ̂(ω)e−iω⊺x

√
κ̂(ω)e−iω⊺x′ dω =

∫
Rd

ϕω(x)ϕω(x′) dω

Now we have an explicit feature map ϕ·(x) ∈ L2. Then,

f(x) = ⟨ϕ·(x), θ(·)⟩L2 =

∫
θ(ω)ϕω(x) dω

means

θ(ω) =
1

(2π)d/2
f̂(ω)√
κ̂(ω)

.

So {ϕω(·)}ω∈Rd serves as a linearly independent basis of the x-space, and
θ(ω) serves as the coefficient for each ϕω(·) when representing f .



Explicit construction of norm for shift-invariant RKHS

With analogous steps as in the finite-dimensional case, we expect

∥f∥2H = ∥θ∥2L2 =
1

(2π)d

∫
Rd

|f̂(ω)|2

κ̂(ω)
dω

and

H = {f : ∥f∥H <∞}, ⟨f, g⟩H =
1

(2π)d

∫
Rd

f̂(ω)ĝ(ω)

κ̂(ω)
dω.

To verify that this H with inner product ⟨·, ·⟩H is the RKHS with RK K,
we need to check

▶ H is a Hilbert space.

▶ K(x′, ·) = κ(· − x′) ∈ H for all x ∈ Rd.

▶ ⟨f,K(x, ·)⟩H = f(x) for all x ∈ Rd.

The first point is an exercise in analysis, so we skip it.
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Explicit construction of norm for shift-invariant RKHS

We now show K(x′, ·) = κ(· − x′) ∈ H for all x ∈ Rd. Since

K̂(x′, ·)(ω) = κ̂(ω)eiω
⊺x′

,

we have

∥K(x′, ·)∥2H =
1

(2π)d

∫
Rd

κ̂(ω) dω = κ(0) = K(x, x) <∞.

Next,

⟨f,K(·, x)⟩H =
1

(2π)d

∫
Rd

ˆf(ω)κ̂(ω)e−iω⊺x′

κ̂(ω)
dω = f(x).

So our guess is verified.
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Norm of shift-invariant RKHS

Theorem
Let κ : Rd → R be such that κ ∈ L1. Let

K(x′, x) = κ(x− x′)

be a PDK.6 Then, the RKHS H corresponding to K has inner product
and norm

⟨f, g⟩H =
1

(2π)d

∫
Rd

f̂(ω)ĝ(ω)

κ̂(ω)
dω, ∥f∥2H =

1

(2π)d

∫
Rd

|f̂(ω)|2

κ̂(ω)
dω.

6So κ̂ ≥ 0 exists as a function rather than as a measure.
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Norm of shift-invariant RKHS

Algorithmically speaking, we will later see that we need to efficiently
evaluate κ, not κ̂. In particular, the formula

∥f∥2H =
1

(2π)d

∫
Rd

|f̂(ω)|2

κ̂(ω)
dω

will not be used in our computation.

However, the norm in the Fourier domain will allow us to think about the
RKHS induced by K theoretically. Specifically, we will be able to identify
the H with appropriate Sobolev spaces.

Shift invariant kernels 58



Example: Laplace kernel

Let

κ(x) = exp(−∥x− x′∥2
r

)

Then,
1

κ̂(ω)
∝ (1 + r2∥ω∥22)(d+1)/2

and the RKHS norm is

∥f∥2H ∝
∫
Rd

(1 + r2∥ω∥22)(d+1)/2|f̂(ω)|2 dω.

For d odd, this is the H(d+1)/2 Sobolev norm. (For even d, this still is the
H(d+1)/2 Sobolev norm if we appropriately define fractional derivatives.)

Note that the “bandwidth” r determines the relative amount we penalize
the derivative. When r is large, kernel methods prefer smoother (smaller
derivative) functions. When r is small, kernel methods are more favorable
towards less smooth (larger derivatives) functions.
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Example: 1-D Laplace kernel

When d = 1, then,

κ̂(ω) =
2r

1 + r2ω2

and

∥f∥2H =
1

2π

∫
R

|f̂(ω)|2

κ̂(ω)
dω =

1

2r

1

2π

∫
R
|f̂(ω)|2 dω +

r

2

1

2π

∫
R
|ωf̂(ω)|2 dω

=
1

2r

∫
R
|f(x)|2 dx+

r

2

∫
R
|f ′(x)|2 dx

=
1

2r
∥f∥2L2 +

r

2
∥f ′∥2L2
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Example: Gaussian kernel

Let σ > 0 and X = R. Then, K : R× R→ R defined as

K(x′, x) = e−
(x−x′)2

2σ2 = κ(x− x′)

With some calculations, we get

1

κ̂(ω)
=

1√
2πσ2

∞∑
s=0

σ2sω2s

2ss!

and

∥f∥2H =
σ√
2π

∞∑
s=0

σ2s

2ss!
∥f (2s)∥2L2

Intuitively speaking, ∥ · ∥H penalizes all even derivatives. (One can show
that elements of H are infinitely differentiable.)
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Matérn kernel
Let κ be such that

1

κ̂(ω)
=

Γ(s− d/2)

2dπd/2Γ(s)(2(s− d/2))s−d/2rd
(2(s− d/2) + r2∥ω∥22)s

for s > d/2, where s is an integer. (If s ≤ d/2, then
K(x, x′) = κ(x− x′) is invalid as κ̂ /∈ L1 and K(x, x) =∞.) The
Matérn kernel generalizes the Laplace kernel, which has s = (d+ 1)/2.

Then, we have

K(x, x′) =
21−ν

Γ(ν)

(√2ν∥x− x′∥2
r

)ν
Kν

(√2ν∥x− x′∥2
r

)
,

where Γ is the gamma function and Kν is the modified Bessel function,
and ν + d/2 = s.

Higher values of s imply the RKHS is more restricted; higher orders of
differentiability are required, and the number of differentiability
requirements grows with d. (This indicates a limitation of
translation-invariant kernel methods. Since d is large, the RKHSs using
Matérn kernels look for very smooth functions.)



Matérn kernel K ⇔ Sobolev space H

The RKHS corresponding to the Matérn kernel is the Sobolev space Hs.

If s ≤ d/2, then the corresponding space

{f ∈ L2 |
∫
Rd

(1 + r2∥ω∥22)s|f̂(ω)|2 dω <∞}

This is a Hilbert space Hs, but it is not an RKHS.

Proof. If Hs with s ≤ d/2 were an RKHS, it would have kernel K,
which would have the reproducing property

⟨K(x, ·), f(·)⟩H =
1

(2π)d

∫
Rd

(1+r2∥ω∥22)sf̂(ω)
e−iω⊺x

(1 + r2∥ω∥22)s
dω = f(x).

This allows us to identify K̂(x, ·), but this would lead to the conclusion
that K(x, x) =∞.
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Learning in RKHS

We now consider

minimize
f∈H

E
(X,Y )∼P

[ℓ(f(X), Y )] + λ∥f∥2H,

where H is an RKHS with kernel K and λ ≥ 0. Since we don’t have
access to EP , we use N training datapoints (X1, Y1), . . . , (XN , YN ) ∼ P
and solve

minimize
f∈H

1

N

N∑
i=1

ℓ(f(Xi), Yi) + λ∥f∥2H.

Infinite-dimensional problem if dimH =∞. How to solve with finite
computation?
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Representer theorem

The representer theorem shows that the solution must lie in an
N -dimensional subspace of H.

Theorem
Let L be any function. Let X be a nonempty set, K : X × X → R a
PDK, H the corresponding RKHS, X1, . . . , XN ∈ X , and
Y1, . . . , YN ∈ R. Consider the optimization problem

minimize
f∈H

L({(Xi, Yi, f(Xi))}Ni=1) +Q(∥f∥H),

where Q : R+ → R is a strictly increasing function. L is assumed to be
any function (not necessarily convex). Then, if a minimizer exists, any
minimizer must be in

span({K(Xi, ·)}Ni=1).
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Proof. Let
S = span({K(Xi, ·)}Ni=1) ⊆ H.

In homework 3, you are to show that f ∈ S⊥ implies f(Xi) = 0 for all
i = 1, . . . , N .
Let f⋆ be a minimizer. Let

f⋆ = s+ t

such that s ∈ S and t ∈ S⊥. Then

L({(Xi, Yi, f
⋆(Xi))}Ni=1) = L({(Xi, Yi, s(Xi))}Ni=1)

while

Q(∥f⋆∥H) = Q

(√
∥s∥2H + ∥t∥2H

)
≥ Q(∥s∥H),

where equality holds if and only if t = 0. Since f⋆ is assumed to be a
minimizer, we conclude t = 0.
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Therefore, to solve

minimize
f∈H

N∑
i=1

ℓ(f(Xi), Yi) + λ∥f∥2H,

it is enough to search in

span({K(Xi, ·)}Ni=1).

Therefore, parameterize the solution into the form

f =

N∑
k=1

βkK(Xk, ·)

and then optimize over β1, . . . , βN .
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Kernel ridge regression

Quickly establish the following identity.

Lemma (Push-through identity)
Let γ > 0, U ∈ Rm×n, and V ∈ Rn×m. Then

(γI + UV )−1U = U(γI + V U)−1,

assuming (γI + UV ) is invertible.

Proof. Clearly,
U(γI + V U) = (γI + UV )U.

Left-multiply (γ + UV )−1 and right-multiply (γ + V U)−1.
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Kernel ridge regression: Finite-dimensional feature map

Let X be a nonempty set. Let X1, . . . , XN ∈ X , Y1, . . . , YN ∈ R,
ϕ : X → Rd, and λ > 0. Let

Φ =


ϕ(X1)

⊺

ϕ(X2)
⊺

...
ϕ(XN )⊺

 ∈ RN×d, Y =


Y1

Y2

...
YN

 ∈ RN .

Consider the ridge regression7 problem

minimize
θ∈Rd

1

N

N∑
i=1

(hθ(Xi)− Yi)
2 + λ∥θ∥2,

where hθ : X → R is defined as hθ(x) = ϕ(x)⊺θ. Equivalently,8 we write

minimize
θ∈Rd

1

N
∥Φθ − Y ∥2 + λ∥θ∥2.

7Regression with ℓ2-regularization is referred to as ridge regression in classical
statistics.

8Linear regression is an instance of the finite-sum formulation and its goal is to
obtain a prediction function hθ⋆ (which is linear in θ but need not be linear in x)
rather than to obtain the parameters θ.



Because the objective function is convex, the solution θ⋆ is found by
setting the gradient to 0

0 =
2

N
Φ⊺(Φθ⋆ − Y ) + 2λθ⋆,

which solves to

θ⋆ = (Φ⊺Φ+ λNI)−1︸ ︷︷ ︸
d×d

Φ⊺Y︸︷︷︸
d×1

= Φ⊺︸︷︷︸
d×N

(ΦΦ⊺ + λNI)−1︸ ︷︷ ︸
N×N

Y︸︷︷︸
N×1

= Φ⊺ (G+ λNI)−1Y︸ ︷︷ ︸
=φ⋆∈RN

,

where we used the kernel matrix G ∈ RN×N

Gij = ϕ(Xi)
⊺ϕ(Xj)

and the push-through identity. Once “training” is complete, i.e., θ⋆ has
been computed, we make predictions on new data x ∈ X with

hθ⋆(·) = ϕ(·)⊺θ⋆

=

N∑
i=1

φ⋆
iK(·, Xi).



Kernel ridge regression: RKHS

Next, consider the same linear regression setup with the prediction
function in an RKHS as the explicit optimization variable. Let
X1, . . . , XN ∈ X , Y1, . . . , YN ∈ R, λ > 0, K : X × X → R be a PDK,
and H the corresponding RKHS. Consider kernel ridge regression problem

minimize
f∈H

1

N

N∑
i=1

(f(Xi)− Yi)
2 + λ∥f∥2H.

By the representer theorem, a minimizer has the expression

f(x) =

N∑
j=1

φjK(x,Xj),

so we plug this form in to get a finite-dimensional optimization problem

minimize
φ∈RN

1

N

N∑
i=1

 N∑
j=1

φjK(Xj , Xi)− Yi

2

+ λ

∥∥∥∥∥∥
N∑
j=1

φjK(Xj , ·)

∥∥∥∥∥∥
2

H

.

Using the kernel matrix G ∈ RN×N , we equivalently write

minimize
φ∈RN

1

N
∥Gφ− Y ∥2 + λφ⊺Gφ.

The solution is found by setting the gradient to 0

0 =
2

N
G(Gφ⋆ − Y ) + 2λGφ⋆

and solves to
φ⋆ = (G+ λNI)−1Y.

(For the sake of simplicity, let us assume G is invertible. When G is not
invertible, φ⋆ is a solution, but not the unique one. More on this in the
homework assignment.) So, we have

f⋆(·) =
N∑
j=1

φ⋆
jK(·, Xj).

This is exactly the same prediction function as before, except that we did
not need to have a finite-dimensional feature map.



Kernelized implementation

To conclude, given X1, . . . , XN ∈ X , Y1, . . . , YN ∈ R, λ > 0, and a PDK
K : X ×X → R, we can implement kernel ridge regression in a kernelized
manner by forming the kernel matrix G ∈ RN×N (requires N(N + 1)/2
evaluations of K(·, ·) but no need to explicitly form a feature vector) and
perform linear algebra computations to solve

φ⋆ = (G+ λNI)−1Y.

Then, prediction on new data x ∈ X can be made with

f⋆(x) =

N∑
j=1

K(x,Xj)φj .
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RKHS SGD

Let X be a nonempty set, H an RKHS on X with RK K, and Y = R.
Consider the optimization problem

minimize
f∈H

E(X,Y )∼P [ℓ(f(X);Y )].

SGD in the RKHS is

fk+1 = fk − αk∇f ℓ(f
k(Xk+1);Yk+1)

= fk − αk∇f ℓ(⟨fk,K(Xk+1, ·)⟩H;Yk+1)

= fk − αkℓ
′(fk(Xk+1);Yk+1)︸ ︷︷ ︸

=βk

K(Xk+1, ·)

= fk − βkK(Xk+1, ·),

where we set f0 = 0.
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RKHS SGD

The RKHS SGD can be implemented with

fk(Xk+1) = −
k∑

i=1

βiK(Xi, Xk+1)

βk+1 = αk+1ℓ
′(fk(Xk+1);Yk+1)

Storage← (βk+1, Xk+1)

and

fN (x) = −
N∑

k=1

βkK(Xk, x).
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