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Linear learning with nonlinear features

Consider the setup with ¢: X — R?, where d may be smaller or larger
than the “dimension” of X’. (We later consider infinite d.)

Consider
minimize E [(fo(X),Y)],
0 (X,Y)~P

where fg is a linear® prediction function
d
fo) = (0,6()) = _ (")
i=1
and (-, -) denotes the standard inner product in R%.

Equivalently, consider the dataset
()u(la Yl): ceey ()U(N7YN)a

with X; = ¢(X;), and fo(X;) = (0, X,).

2Linear in the parameters #, but nonlinear in the input X.




Absorbing bias into linear weights

What if we want a bias? So, what if we want to learn

fon(-) = (0,9(-)) +0.

Define

and note

Trick: Absorb bias into linear weights.
WLOG, consider fy(-) = (0, #(-)) without biases.
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Kernel SGD

Training with linear fy:

minimize E [((0-o6(X),Y)].
0 (X,Y)~P

In ML and DL applications, £(-,y) is often convex in its first input (for
fixed y). E.g., MSE and cross-entropy losses. Therefore, training is a
convex optimization problem.

Therefore we can establish global convergence guarantees for SGD:

i(k) ~ Uniform{1,...,N}
O = 0" — al (6% - H(Xin)), Yiw)) (X )-
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Decision boundaries linear in ¢, nonlinear in X

Linear classifiers yield decision boundaries that are linear in the features.
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Most ML tasks are nonlinear in X, and features nonlinear in X are
needed to perform classification well.
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Feature map (¢) — Kernel (K) and RKHS (H)

Consider ¢(z) = (¢1(x), d2(x), ..., dq(x)) Assume ¢, ..., P4 are
linearly independent as functions. Consider K: X x X — R defined as

K(2',z) = (¢(2), ¢(2"))a-
Let
H= span{@c}g:l.
For any

d d
f=Y arpreM, g=> Pudr €M,
k=1 k=1

define the inner product

d
(f,9)n =Y _ b
k=1

Then, H is a finite-dimensional Hilbert space.
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Reproducing property

Our (-, )3 makes {¢1,...,¢q} an orthonormal basis of H.

If £(-) = Yhey akdi(-), then
(fC), or())n =

fork=1,....,d.
Note that 4
K(,2) =Y or(@)on() €H
k=1
forall x € X.
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Reproducing property

K has the reproducing property with respect to (-, -)4:

If £(-) = 20—, arer(-), then

i.e., inner product with K (-, x) is evaluation at z. To put it differently
yet,
(WK(,z2)y: H—-R

is the point evaluation (linear) operator at point x.

We say K is a reproducing kernel of H.
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Example: Polynomial space

Let X =R. Let -~ _
1
T
22
P(z) = x3
_xdil_
Then,

H = {Polynomials of degree < d}

and (-,-)3 is the R%inner product of the monomial coefficients.

The kernel is

Prologue: Linear learning with finite nonlinear features 10



Connection to 2-layer neural networks

Let X = R"™. Let ¢1,...,¢q be defined as
¢k(l’) :cr(a;erbk)
fork=1,...,d. Then
d
H= {Zuko(aZa:—l—kaul,...,udER},
k=1

i.e., H is the set of 2-layer nerual networks with hidden layer weights and
biases fixed to a1,...,aq and bq,...,by.

Performing kernel SGD corresponds to training the output layer weights
of a 2-layer neural network with the hidden layer weights and biases fixed
(and not trained).

Prologue: Linear learning with finite nonlinear features
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Feature engineering

Feature engineering is the task of choosing (often hand-crafting) ¢ for a
given ML task.

There was a time when ML was primarily about feature engineering.?
In modern deep learning, features are learned.

30ne can argue that in modern machine learning practice, feature engineering is
still the main engineering challenge.
Prologue: Linear learning with finite nonlinear features
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Learning features with deep neural networks

Let 6 = (61, 0®)) and let

fo(x) = (01, ¢pez) ().

In other words, fy is a deep neural network, 0 is the trainable
parameters for the output linear layer (FC1), and #(?) is the trainable
parameters for the earlier layers.

A deep neural network uses a prediction function non-linear in its
parameter 6. Most modern deep neural networks have this form.

However, if (2 is fixed, then fy is linear in #1). Deep learning can be
interpreted as a process in which the feature mapping ¢y is learned
along with its linear weights 6(1).

Prologue: Linear learning with finite nonlinear features
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Kernel: Definition

Let X be a nonempty set. Let K: X x X — R. We say K is symmetric
if K(2/,2) = K(z,2') for all z,2’ € X. Given N € N and
Zi,...,2n € X, let G € RVXN pe

Gij = K(z;,z5),  4,j€{l,...,N}.

We call G the kernel matrix or the Gramian matrix of K. Then K is a
positive definite kernel (PDK) if G is symmetric positive semidefinite for
any N € Nand z1,...,xy € X. Equivalently, K is positive definite if it

is symmetric and
N N
33 yklena) 20
=1 :

forall NeN,z1,...,2y € X and c € RY.

We discuss the building blocks of PDKs. This machinery will allow us to
construct PDKs and identify PDKs.

Kernels
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Strictly positive definite kernels

The inconsistent naming warrants some clarification. A matrix

G € RY*N is symmetric positive definite if all eigenvalues are strictly
positive (>) and symmetric positive semidefinite if all eigenvalues are
nonnegative (>). In contrast, a strictly positive definite kernel, as
defined below, refers to the strict notion (>) while positive definite
kernels correspond to the non-strict notion (>).

We say K: X x X — R is a strictly positive definite kernel if for any
N € N and distinct z1,...,z5y € &, the corresponding Gramian matrix
G is symmetric (strictly) positive definite. Equivalently, K is strictly
positive definite if it is symmetric and

N N
ZZC"CJ'K(%’%) >0
i=1 j=1

for all N € N, distinct z1,...,zx € X, and nonzero ¢ € RY.

Kernels 16



Inner products of feature maps

Let ¢: X — H for some Hilbert space H (not necessarily an RKHS)
equipped with inner product (-,-)3; and induced norm || - ||%. Then,
K: X x X — R defined as

K@ z) = (¢(x), d(z"))n
is a PDK, since, forall N € N, z1,...,zy € X, and c € RV,

N N
ZZCiCjK(xi’xj ZZQCJ ])>7—[

i=1j=1 i=1j=1

N N
= <Z cio(x;), Z Cj¢(zj)>
H

i=1

Kernels
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Example: Linear kernel

The simplest instance is X = R?, H = R?, ¢(x) = 2, and

K(z',7) = (z,2')pa.

Kernels
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Example: Tensor product

Let f1,..., fq be functions from X to R. Then, K: X x X - R
d
K(@',z) =) fi(z)fi')
i=1

is a PDK. Using the notation of tensor products, which we further discuss
later, we can equivalently write

d
K=Y fi®f

i=1

(Analogous to expressing a matrix as a sum of d rank-1 outer products.)

Proof. The sum of d tensor products is an instance of a PDK defined
through the feature map

Kernels fd(x) 19



Example: Min kernel

Let X =[0,00). Then, K: X x X — R defined as
K(z',x) = min(z, z")

is a PDK.

Proof. For L2(R) = {f : R — R| ([ |f(2)|?dz)'/? < o0}, let
¢: X — L*(R) be defined by ¢(z) = 1j9 . Then

K(.’El, 1‘) = <¢(CL'), ¢($I)>L2(R) = <1[07m]7 1[0,1’]>L2(R) = min(ﬂc, CL'/).

Kernels 20



Operations preserving PDKs

Given simple PDKs, we can construct more complex PDKs through
operations preserving positive definiteness.

Let K1 and K5 be PDKs mapping X x X to R. Then

» oK forany a >0

> K+ Ky

> KK
are PDKs. The first two claims are clear. The third claim means
K3: X x X = R defined by

Ks(2',z) = Ky (2, 2) Ko (', 2), Vo,x e X

is PDK, and it follows from the Schur product theorem.

Kernels 21



Schur product theorem

Theorem

Let A € RV*N and B € RV*N be symmetric positive semidefinite.
Then the Hadamard product C = A ® B, defined by C;; = A;; B;; for
i,j5 €{1,...,N}, is symmetric positive semidefinite.

Proof. Let

N N
_ T _ T
A= g Aiuu, B = E Vi3]
i=1 i=1

be the eigenvalue decompositions of A and B with respective
orthonormal eigenvectors u1,...,un and vy,...,vy. Since ® is bilinear,

N N
C=A060B= <Z)\ZUZUI> ®© Zijjv;-
i=1 i=1
NN N N
:ZZ s (g vj] ZZ vi(ui ©vj)(u; © ;)T

is a sum of N2 (rank-0 or rank-1) symmetric positive semidefinite
matrices and therefore is symmetric positive semidefinite. O



Sums and integrals of PDKs

Let {K;}ien be a sequence of PDKs mapping X x X to R. If

o

Koo(2' z) = ZKi(x',ac)

=1

finitely exists for all z, 2’ € X, then K, is a PDK. Let {K, }wew be a
family of PDKs mapping X x X to R. Let i be a nonnegative measure
on W. If

K2, z)= /W Ky (2, x) du(w)

is well-defined (measurable and finitely integrable) for all 2,2’ € X, then
K is a PDK.

Proof
N N
ZZCCJ (@i, ;) /ZZCZCJ (@i, ;) dp(w) >
i=1 j=1 i=1 j= 1\_\’_’

>0 |
Kernels 23



Example: Polynomial kernel

Let X = R? and p € N. Then, K: R? x R? — R defined as
K(z', ) = ((z,2') + 1)?

is a PDK.

Kernels
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Example: Exponential kernel

Let X = R%. Then, K: R? x R — R defined as

K, x) = exp((z,2)) = 3 %“fc’””'””

p=0

is a PDK.

Kernels
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Example: Cosine kernel

Let ¥ =R. Then, K: X x X — R defined as
K(a2',2) = cos(z — 2') = cos(z) cos(z’) + sin(x) sin(z’)

is a PDK.

Kernels
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Example: Kernels with integers

Let X = N. Then, K: N x N — N defined as
K(Z‘/,Jf) — me’ — e(logQ)zz’

is PDK.

(The point is that the theory of kernels are applicable to non-vector data
types X'. There are also kernels for strings of variable lengths for NLP
applications.)

Kernels
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Reproducing kernel Hilbert space (RKHS)

Let X’ be a nonempty set (No further assumption on X yet). Let H be a
(real) Hilbert space of functions f: X — R equipped with inner product
(-, )% and induced norm || - ||;. By definition, ||f||% = 0 if and only if
f(x)=0forall z € X.*

K: X x X = R is a reproducing kernel (RK) of H if
K(x,-) € H, VreH,
and K has the reproducing property
f@)={f,K(z,))n, VzeX, feH.

If % has an RK, it is a reproducing kernel Hilbert space (RKHS).

4Clarification on next slide.
Reproducing kernel Hilbert space (RKHS)
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RKHS vs. L spaces

To clarify, H is a space functions, not a space of equivalence classes of
functions. Therefore, the point evaluation f(z) is well defined for any
zeX.

If f € L?, then f is not a single function, but rather a set of functions
that differ only on a set of measure 0, and the point evaluation f(z) is
undefined. (fB(x 0 f(z) dx is well defined, but f(z) is undefined.)

Reproducing kernel Hilbert space (RKHS)
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RKHS vs. L spaces

RKHS function spaces (rather than LP spaces) are how people think
about functions in machine learning theory.

The output of an ML algorithm is a prediction function f (and we use f
for point evaluations, not integrals). RKHS is the class of Hilbert spaces
on which point evaluation is continuous.

Therefore, the requirements of RKHSs that the evaluation functional is
continuous is a natural requirement, provided that you insist on working
with Hilbert spaces. (Some recent research tries to understand deep
learning as finding f within Banach spaces.)

Reproducing kernel Hilbert space (RKHS)

31



Example: Band-limited L? functions
Let B > 0and X =R. Let

/ P @ =o ||f|H<oo}
R\[—

() = / F(@)g(=) / F@)(w

be the Hilbert space of band-limited L? functions.

Hz{f:R—)R

Then, H is an RKHS with RK

1 L,
K(2',x) = 2Bsinc(B(z — 1)) = 2—/ e T e _p py(w) dw.
T Jr

To see why, note that K/(a?)(w) = "1 _p p)(w), so K(z,-) € H for
all z € R, and

(K, /f ’“”dw—f/f e dio = f(2),

so K has the reproducing property.



Continuity of point evaluation

RKHSs can be equivalently defined by continuity of point evaluation.

Theorem

Let X be a nonempty set. Let H be a Hilbert space of functions from X
to R. H is an RKHS if and only if the evaluation functional L., defined
as L,[f] = f(x), is bounded (continuous) for all x € X.

Proof. Assume H is an RKHS. For any z € X,

(Lo f]] = [ K (5 )| < A fllnl K2, )l VfeH

and ||K (x,")|l3 < oo since K(x,-) € H. So L, is bounded.’

Next, assume L, : H — R is bounded in H. By the Riesz representation
theorem, there exists a h, € H such that

Lolf] = (ha f)u, VfeH.

Let K(z/,x) = hy(2') for all z,2’ € X. O

5“Bounded” means bounded/continuous linear operator.



Kernel (K) < RKHS (H)
There is a one-to-one correspondence between PDKs and RKHS.

First, establish uniqueness: If a H exists for a K, then it is unique.
and if a K exists for a H, then it is unique.

Theorem
If H is an RKHS, its reproducing kernel K : X x X — R is unique.

Proof. Let K and K’ be two RK of an RKHS #H. Then for any = € X,

1K (2 ')*K/( [

K(z,) - K'(z,-),K(z,) = K'(z,))u
K(CL’, ),K( )_K/ m?')>7~£ - <KI(:L‘,-),K(£E,~) —K/(.’L',-)>7.[
=K(z,z) - K'(z,2) — K(z,2) + K'(z,x)

0

/\/\
—~ o~

Therefore, K = K. |
Reproducing kernel Hilbert space (RKHS) 34



Kernel (K) < RKHS (H)

First, establish uniqueness: If a K exists for a H, then it is unique.

Theorem
If K: X x X — R is a reproducing kernel, its Hilbert space H is unique.

Proof. Let H be an RKHS of a reproducing kernel K. Since
K(xz,-) € H for all x € X, we have

S =span{K(z, )|z € X} CH

and S C H. We claim S = H, which holds if and only if 0 is the only
element in H orthogonal to all vectors in S. Indeed, if h € H satisfies

<h’aK($7)>:0a V.I‘EX,

then h(z) =0 for all x € X, by the reproducing property, and h = 0.
Since, any RKHS of K is precisely characterized by § = H, it is
unique. [

Reproducing kernel Hilbert space (RKHS) 35



Kernel (K) < RKHS (H)

We now complete the proof of the one-to-one correspondence by showing
existence: There exists a H exists for a K; and there exists a K for a H.

Theorem (Moore—Aronszajn Theorem)

Let X be a nonempty set. Then K: X x X — R is a PDK if and only if
it is an RK of an RKHS H.

Reproducing kernel Hilbert space (RKHS) 36



Proof. (<) Assume K is an RK of an RKHS H. Then K is symmetric,
since K(2',z) = (K(x,-), K(2', )y = (K(2',-), K(x, )y = K(z,z")
for all z,2’ € X. Moreover, for any N € N, z1,...,zy € X, and

c € RY, we have

N N N
ZZCZCJK(.’L‘“.IJ) = ZZCZCJ<K($Z, ) K(xj,))n
i=1 j=1 i=1 j=1
N N
= <ZCZK((E“ .),chK(xj, )>
i=1 j=1 "
2
= ZCiK(l‘“)
i=1 H
>0
So K is a PDK.

Reproducing kernel Hilbert space (RKHS)
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(=) Let K: X Xx X — R be a PDK. Define H, to be the (not
necessarily complete) vector space

Ho = span{K(z,-) |z € X}

N
:{ZaiK(a:i,-)‘NeN, T1,...,oN € X, al,...,aNeR}.

=1
For
N
Zal xlv' ) g() = ZBZK(xiv)a
=1
define
N N’
Zzalﬂﬂ (zi,2 ]
i=1 j=1
N N’
:ZaiZBj x’La J ZBJZQ'L ‘r’La J
i=1 =1 i=

=g(x;) :f(mj)

Reproducing kernel Hilbert space (RKHS) 38



Clearly, (-,*)2,: Ho x Ho — R is symmetric and bilinear. The value of
(-, Y2, is independent of the representation of f via
X1,...,TN,01,...,an and g via 24, ..., 2\, B1,. .., BN, since

N N’
Ho = Z%‘g(%) = Zﬁjf(x;)
i=1 j=1

(So (-, -y, is well-defined.) Since K is a PDK, we have

{f, )2, = aTGa >0, where a = (a1, ...,ay) and G € RV*Y s the
kernel matrix for z1,...,2zy. So (-, )3, is a semi-inner product (it is an
inner product, but we have so far shown that it is a semi-inner product.)
so Cauchy-Schwartz inequality holds. We have the reproducing property

<f7 Zz, Zaz Iz, *f(x), vxEX,fGHo.

Therefore,

|f(l‘)‘ < |<f’K($7')>H0| < Hf”HOHK(m’ ')HHO < ||f||7‘lo K(x,x),

and || f|l#, = 0 implies f(z) =0 for all z € X, i.e., f = 0. Therefore, H,
is a pre-Hilbert space (a vector space equipped with an inner product).



Pointwise convergence and definition of H

We complete Hg to get H by considering Cauchy sequences in Hy.

Let {fxtren C Ho be a Cauchy sequence with respect to the
|| - l#,-norm. For any z € X,

[ () = fo(@)] = [{fn = Frs K(2:-)) 210
< A = frllro 1K (2, )l
= |[fm = fallno vV K (2, 2)
—0
as min{m,n} — co. So, for all x € X, {fr(x)}ren C R is a Cauchy

sequence and converges to a limit. We define fo.: X — R to be the
pointwise limit of {f;}ren, i.e.,

fool(x) = klggo f().

We define H as the space of all pointwise limits of Cauchy sequences in

Ho. Clearly, H is a vector space. Moreover, Hy C H, since for any

f € Hp, the Cauchy sequence fi, = f for all k£ has the limit f.
Reproducing kernel Hilbert space (RKHS)
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Definition of (-,-)4

Let foo, goo € H with Cauchy sequences { fx }ren € Ho and
{9k }ren C Ho respectively converging to them. Define

<fooa gOO>H = kli—>nc}o<fk7 gk>'H0 .

For (-, ), to be well defined, the limit must exist and the limit must not
depend on the Cauchy sequence converging to foo, goo € H. First,
|<fmvgm>7-lo - <fnvgn>7-[o| = |<fm - fnvg’m>'Ho - <fnvgn - gm>7—lg|
< |<fm - fnvgm>’Ho| + |<fnagn - gm>7~Lo|
< | fm = Fallsollgmllae + I frllaolgn — gmllae — 0
as min{m,n} — co. (Note {fx}ren C Ho and {gi}ren C Ho are
bounded since Cauchy.) Next, let {f; }ren C Ho and {g}, }ren C Ho also
be Cauchy sequences respectively converging to fo, and goo. Then
|<fnagn>7'lo - <f7/L7g':L>HO| = |<fn - fvlmgn>7'[o - <f7lmg;z - gn>7'lo|
< |<fn - fr/wgn>7~lol + |<f7/z?g;z - gn)Ho‘
< N fn = fallsollgnlize + 10l llgn — gnllzg — 0.
Reproducing kernel Hilbert space (RKHS) 41



(-,-)% is an inner product

That (-, -)% is symmetric and bilinear is clear. Also, || - ||% is nonnegative,
since

el = Jim |1 filley >0
—00

for {fx }ren C Ho converging to foo. For (-, )3 to be an inner product
on H, it remains to verify positive definiteness of || - ||3, i.e., that

| fooll% = 0 only if and only if foo(x) =0 for all z € X.

If foo =0, then || foo |l = 0 since 0 € Ho and {fi}ren C Ho with

fx = 0 converges to fo, = 0. Conversely, assume {fx}ren C Ho
converges to foo and || foo|lx = 0. Then, for any = € X,

Fool)] = [ Jimficlw)| = | T {fi, B, Do < Jim [ ful 16 )

Since || fll#, — |l.flla = 0, we conclude foo(x) =0 for all z € X.

Reproducing kernel Hilbert space (RKHS) 42



‘H is complete
While Cauchy sequences in H have limits H by definition, it remains to

establish that Cauchy sequences in H have a limit in H.

Let f(l) ... be a Cauchy sequence in H, and let
{f(l)}keN, {fk )}keN, ... be Cauchy sequences in Hy with respective

limits f(l) (E?, ... Let {k(j)}jen € N be a sequence such that

I f (3(3) 9| = 0 as j — 0o. Then

kal(i) - f}i@‘)”?—to ||f,€(z k(J)HH
< IFD) = S+ 15D = 1D e + 17D = £

—0

as min{i, j} — oco. Therefore, {fk }jeN is a Cauchy sequence in H,
and it has a limit f € H. Finally,

IE = £ Do < IIE = £ e+ 1 £ — £l = 0

as j — 0o. Since the Cauchy sequence féé), fg), ... in H converges to a
limit £ in H, we conclude H is complete.



K is an RK for H

We have established that K has the reproducing property for Hy and
that K(z,-) € Ho C H for all z € X. It remains to show that K has the
reproducing property for all of H. Let foo € H and let {fi}ren C Ho be
a Cauchy sequence converging to fo,. Then

Sr(@) = (i, K (2, ) -

—_—— ——

— foo () = (foo, K (2,2)) 1

Reproducing kernel Hilbert space (RKHS) 44



Feature
Maps

PD Kernels

Integral
Operators

Bounded
Continuous
Evaluation
Functionals

Reproducing kernel Hilbert space (RKHS)

45



RKHS norm quantifies smoothness

The norm of a function in an RKHS controls how fast the function varies
over X with respect to the (pseudo-)metric dy, defined below.

Alternatively, one says, || f]|% quantifies the “smoothness” or
“complexity” of f. In the context of machine learning and optimization,
“smoothness” often refers to the variation of the function, and does not
directly refer to (infinite) differentiability. Specifically, for f € H,

(@) = f@)] = [{f, K(2,") = K(2',))n]
S W llll K (2, ) = K (2, )12
= [Ifllndk (2, ),

so f is || f|l#-Lipschitz continuous as a map from (X,dk) to (R,]-|).

Reproducing kernel Hilbert space (RKHS)



Shift invariant kernels

Shift invariant kernels
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Bochner’s theorem

Let X = RY. We say K: R? x R? — R is shift-invariant if there exists a
function k: R? — R such that

K(2',x) = k(x — 2').

Theorem (Bochner)
Let x € X =R?. Then, K(a2',2) = x(x — 2') is a PDK if and only if

() = [ e e

for some (real) nonnegative finite measure 1 € M, (R%).
Proof of (<).

K(«,z) = / e dpw) =R [ e dpw)
R4 R4

= /cos(wT(x —2'))dp(w) = / (cos(wTx) cos(wTx’) + sin(wTz) sin(wTx")) du(w).
R R

d d

We omit (=) since it requires more work and we do not use it. O
Shift invariant kernels 48



Example: Sinc kernel

Let B>0and X =R. Then, K: R x R — R defined as

M H /
K(2',x) = 2Bsinc(B(z — ') = (=27 !f T#x
O If €Tr = x/

is a PDK, since

2Bsinc(B(t)) = / e " _p p)(w) dw.
R

Shift invariant kernels
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Example: 1-D Gaussian kernel

Let 0 >0and X =R. Then, K: R x R — R defined as

B (m—z/)2

K(z',z) =e™ 27

is a PDK, since

! _@? (=)2

K(x/,x): e o2 e 202 ¢ 202
~— ~——

exponential kernel tensor product

Alternatively, we can conclude K is PDK through

t2 0‘2W2

_ o s
e 202 = \—E/e W= 2 duw.
™ JR

Shift invariant kernels



Example: Gaussian kernel with covariance matrix

Let X € R™*"™ be symmetric positive definite. Then

(x —2") T8 (2 — :z:’))

K(x’,m)zexp(— 5

is a PDK.

Justification in homework.

Shift invariant kernels
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Example: 1-D Laplace kernel

Let v >0and X =R. Then, K: R x R — R defined as
]_ ’
K(z',x) = 5677|x71 |

is a PDK, since

16_7"5| = i/ et gy,
2 2T R ’72"‘&)2

(Integral can be evaluated via contour integration.)
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Example: Laplace kernel

Let ,
Clz =22

)

k() = exp( "

Then, one can show that

’I“d

f(w) = 2(zz7rc1—1p((d +1)/2) (1 + r2|w|2)@+D/2

Note that 1

(w)

oc (1472 |lw]3) D/

x>
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Explicit construction of norm for shift-invariant RKHS

We now informally derive the RKHS norm and inner product
corresponding to shift-invariant PDKs.

Let
K(z',7) = k(x — 2')

be PDK. (So & is nonnegative.) Assume x € L', which implies that &
exists. Then

K'a) = s [ VR R@e = o= [ ou()ul) do
(27T) R4 Rd
Now we have an explicit feature map ¢.(x) € L2. Then,

f(@) = (6.(2),00)) 2 = / 0(w) b (1) duw
means - 1 f(w)
W)= i i)

So {¢w.(+) }wera serves as a linearly independent basis of the z-space, and
6(w) serves as the coefficient for each ¢,,(-) when representing f.




Explicit construction of norm for shift-invariant RKHS

With analogous steps as in the finite-dimensional case, we expect

s L[ @
1113 = 116z = (2m)d /]Rd R(w) ¢

and

Ho={f:|fln< oo}, mma—@;dwfﬁﬁf““

To verify that this H with inner product (-, ) is the RKHS with RK K,
we need to check

» H is a Hilbert space.
> K2/, )=k(-—a') e H forallz € R4,
> (f, K(z,-))% = f(z) for all z € RY,

The first point is an exercise in analysis, so we skip it.
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Explicit construction of norm for shift-invariant RKHS

We now show K (z/,-) = k(- — a’) € H for all € R?. Since

—

K(',)(w) = Aw)e™"™,

we have

D - / () der = (0) = K(,2) < o

Next,

1 fW)k(w)e ™
(2m)? Jra A(w)

(fK(,2))u = dw = f(z).

So our guess is verified.
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Norm of shift-invariant RKHS

Theorem
Let k: R% — R be such that k € L. Let

K(z',x) = k(x — 2')

be a PDK.® Then, the RKHS H corresponding to K has inner product
and norm

(2m)¢ Jra  A(w)

Fw)g(w) Flw)|2
Ty e— [)iw) 4, ||fH§_L:( 1 / @I
RA

2m)d R(w)

650 k& > 0 exists as a function rather than as a measure.
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Norm of shift-invariant RKHS

Algorithmically speaking, we will later see that we need to efficiently
evaluate k, not &. In particular, the formula

2 _ 1 |f(w)|2 ”
Hf”?-l - (27T)d /]Rd - d

R(w)

will not be used in our computation.

However, the norm in the Fourier domain will allow us to think about the
RKHS induced by K theoretically. Specifically, we will be able to identify
the H with appropriate Sobolev spaces.
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Example: Laplace kernel

Let ,
Nz =22

)

K(x) = exp( "

Then, )
m o (14 72w|3)d+D)/2
and the RKHS norm is

1712, / (14 222 fw)]? dw.
]Rd

For d odd, this is the H(4*1)/2 Sobolev norm. (For even d, this still is the
H(4+1)/2 Sobolev norm if we appropriately define fractional derivatives.)

Note that the “bandwidth” r determines the relative amount we penalize
the derivative. When r is large, kernel methods prefer smoother (smaller
derivative) functions. When 7 is small, kernel methods are more favorable
towards less smooth (larger derivatives) functions.

Shift invariant kernels

59



Example: 1-D Laplace kernel

When d = 1, then,

. 2
i) = T
and
191 = 5 [ - 2L [ do+ oL [ ot do

/|f ot G [ 17@F do

= I3+ 1712

Shift invariant kernels

60



Example: Gaussian kernel

Let 0 >0and X =R. Then, K: R x R — R defined as

/ _(w=aly? /
K z)=e¢ 22 =k(z—2a)

With some calculations, we get

R(w) W Z 255'

and

oo 2s
2 _ @ g (25)]12
1916 = 5= 2 g2

Intuitively speaking, | - ||3 penalizes all even derivatives. (One can show
that elements of H are infinitely differentiable.)
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Matérn kernel
Let x be such that
I I'(s—d/2)
Rlw)  247d/2T(s)(2(s — d/2))5—4/2pd
for s > d/2, where s is an integer. (If s < d/2, then
K(x,2') = k(x — 2') is invalid as # ¢ L' and K(z,x) = c0.) The
Matérn kernel generalizes the Laplace kernel, which has s = (d + 1)/2.

(2(s = d/2) +7*||w]3)*

Then, we have

K(z,2') =

21—V (\/QVHZ‘ — x’||2)VK (\/21/||x — x’||2)
'(v) T v r ’
where T is the gamma function and K, is the modified Bessel function,
and v +d/2 =s.

Higher values of s imply the RKHS is more restricted; higher orders of
differentiability are required, and the number of differentiability
requirements grows with d. (This indicates a limitation of
translation-invariant kernel methods. Since d is large, the RKHSs using
Matérn kernels look for very smooth functions.)



Matérn kernel K < Sobolev space H
The RKHS corresponding to the Matérn kernel is the Sobolev space H*.
If s < d/2, then the corresponding space
(Fer| [ a+rIel)If@P do <o)
This is a Hilbert space H*®, but it is not an RKHS.

Proof. If H® with s < d/2 were an RKHS, it would have kernel K,
which would have the reproducing property

1 R efina:

K(z,), f()n==—= 1472 ||w]|2)® e dw = .
(K@) O = g5z | 02118 ) oy 4 = £(@)
This allows us to identify Iﬁx,\) but this would lead to the conclusion
that K(z,z) = oo. O
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Outline

Representer theorem and kernel trick
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Learning in RKHS

We now consider

inimi E [0(f(X),Y)] + \|flZ,
minimize (x,y>~p[ (f(X), )]+ Al fII3

where H is an RKHS with kernel K and A > 0. Since we don't have

access to Ep, we use N training datapoints (X1,Y1),...,(Xn,YN) ~ P

and solve

N
minimize ;;aﬂxi),mmun%-

Infinite-dimensional problem if dim H = co. How to solve with finite
computation?
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Representer theorem

The representer theorem shows that the solution must lie in an
N-dimensional subspace of H.

Theorem
Let L be any function. Let X be a nonempty set, K: X x X — R a
PDK, H the corresponding RKHS, X1,..., XNy € X, and
Yi,...,Yn € R. Consider the optimization problem
minimize  L({(Xi, Y. (X))} + QU ko)
where Q): Ry — R is a strictly increasing function. L is assumed to be

any function (not necessarily convex). Then, if a minimizer exists, any
minimizer must be in

span({K (Xi,)}L,).
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Proof. Let
S =span({K(X;, )} ;) CH.

In homework 3, you are to show that f € St implies f(X;) = 0 for all
i=1,...,N.
Let f* be a minimizer. Let
fx=s+t
such that s € S and t € S*. Then

L{(X:,Yi, fH(X)}HE) = LH(X3, Vi, (X)) HLy)

QU ) = @ (\/ Il + ||t||%{) > Q(llsl).

where equality holds if and only if £ = 0. Since f* is assumed to be a
minimizer, we conclude ¢t = 0.

while

Representer theorem and kernel trick

O

67



Therefore, to solve

mlnlmlze ZK +)‘||f||7-£7

it is enough to search in

span({K (X, ) }/L)).
Therefore, parameterize the solution into the form

N
F=Y BeK(Xy,)

k=1

and then optimize over (1, ...,0N.
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Kernel ridge regression

Quickly establish the following identity.

Lemma (Push-through identity)
Lety>0,U € R™*™, and V € R*"*™. Then

(A +UV) U =U(I+VU) ™,
assuming (yI + UV) is invertible.

Proof. Clearly,
UNWI+VU)=(nI+UV)U.

Left-multiply (v + UV)~! and right-multiply (y + VU)~L. O
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Kernel ridge regression: Finite-dimensional feature map

Let X be a nonempty set. Let X1,..., Xy € X, Y1,..., Yy €R,
(i):X—)Rd, and A > 0. Let

P(X1)T Y
_ (b()_(Z)T eRNXd  y = 2 gy,
P(XN)T Yn
Consider the ridge regression” problem
L 1 2 2
minimize N;(ho(Xi) = Y)" + All9]7,

where hg: X — R is defined as hy(z) = ¢(z)T60. Equivalently,® we write

1
inimize —||®0 — Y'||* + X\||9]|*.
minimize N” =+ All6]]

"Regression with ¢2-regularization is referred to as ridge regression in classical
statistics.

8Linear regression is an instance of the finite-sum formulation and its goal is to
obtain a prediction function hgx (which is linear in 6 but need not be linear in z)
rather than to obtain the parameters 6.



Because the objective function Is convex, the solution 6™ Is founa by
setting the gradient to 0

2
— 2T * *
0= 20T(BY* —Y) + 2)6%,

which solves to

0* = (®T® + ANI) "' @TY = OT (dOT+ANI)™' YV
N~ ~—~ SN~
dxd dx1 dx N NxN Nx1
=®T(G+ANI)"'Y,
N—————

=p* ERN

where we used the kernel matrix G € RY*N

Gij = ¢(Xi)To(X;)

and the push-through identity. Once “training” is complete, i.e., 0* has
been computed, we make predictions on new data x € X with



Kernel ridge regression: RKHS

Next, consider the same linear regression setup with the prediction
function in an RKHS as the explicit optimization variable. Let
X, ., XneX Y,....,YveER A>0, K: X x X = R be a PDK,
and H the corresponding RKHS. Consider kernel ridge regression problem

minimize Z 2+ AN fII3,

feH

By the representer theorem, a minimizer has the expression

N
x) = Zcij z, X
j=1

so we plug this form in to get a finite-dimensional optimization problem
2 2
N
minimize — -Yil +A K(X,,-
pERN Zl Z% i Zl% (X5-)
1 = J= H
Using the kernel matrix G € RV*Y we equivalently write

minimize —HG(,D Y% 4+ A TGo.
pERN



Kernelized implementation

To conclude, given X1,..., Xy € X, Y1,..., YNy € R, A > 0, and a PDK
K: X xX — R, we can implement kernel ridge regression in a kernelized
manner by forming the kernel matrix G € RV*¥ (requires N(N + 1)/2
evaluations of K (-,-) but no need to explicitly form a feature vector) and
perform linear algebra computations to solve

©* = (G+ANI)'Y.

Then, prediction on new data z € X can be made with

N

fra) =" K(z, X;)p;.

j=1
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RKHS SGD

Let X be a nonempty set, H an RKHS on X with RK K, and YV = R.
Consider the optimization problem

mi?iGr%ize Ex,yy~p [((f(X);Y)].

SGD in the RKHS is

A= fF — V(5 (Xgg1); Yerr)
= " — ap V((f* K(Xpt1, )24 Yier1)
= % — anl (f*(Xps1); Yar1) K(Xpg1, )
=Pk
= fk - 6kK(Xk+17 ')7

where we set f0 = 0.
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RKHS SGD

The RKHS SGD can be implemented with

F(Xpt1) = Zﬁz (X, Xky1)

Brt1 = Oék+1€ (f*(Xk41); Yes1)
Storage < (Br+1, Xkt1)

and

N
@) = =5 Bk (Xi, ).
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