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“...in fact, the great watershed in optimization isn't between lin-
earity and nonlinearity, but convexity and nonconvexity.”

— R. Tyrrell Rockafellar, SIAM Review, 1993 —



Risk decomposition

Let
0* € argmin R|fo], 0* € argminR[f,].
OERP GeRrp
Then,

RIf;] — R* = (RIf3] — RIf5]) + (Rlfor] — Rlfo])

=Estimation error =Estimation error
(Rlfo:] = R*) + (RIfg) = RIfo-])
=Approximation error =Optimization error

< (RIf) = RIfg)) + (Rl fo-] = Rlfe-])
(Rlfo-] = R*) + (RIf3] = RIf;.]) -
—_— ——

=Optimization error > 0

We now discuss algorithms for solving

minimize  R[f].
derd



Gradient descent

Consider the optimization problem

minimize F(6)
9cRr?

where F': R — R is differentiable.

We consider gradient descent
OF L = 0F — , VF(0%)

where 00 € R? is a starting point and ag, a,... € R is a positive
sequence of stepsizes.



Outline
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Least-squares to standard quadratic form

Consider the least-squares problem
minimize 1||®0 — Y%,
HeR4
where ® € RVX4 and Y € RY. Let 6* = &Y. Then,
1 2 1 * * 2
§||<I>9—YH = §||<I>(9— 0*) + 0" - Y|

= 1||<1>(9 — 0P+ (0 —09)TOT (DD — )Y + 1||<1>9* —Y|?
2 N 2
=0 v
_1 _ OA*\T T _ pA*
_2(9 0*)T DTH( — 0*) + c.
def

=H

Note that H € R%*? is symmetric positive semidefinite.
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Convex quadratic optimization

More generally, consider the optimization problem

minimize F(6) = 20THO +bT0 + c,
fcRd
where H € R%*? is symmetric positive semidefinite, b € R, and ¢ € R.

Then
VF(0) = HO+b.

Note that if 6THO + bT6 + ¢ had an asymmetric H € R%*? then the
function is equal to

1
SOT(H + H)+570 + c.
So there is no loss of generality in assuming H € R%*? is symmetric. This

loss function is convex if and only if H > 0. (To be proved in homework.)

Quadratic optimization



Convex quadratic optimization in standard form
For 1
F(0) = §GTHG +070 +c,
there exists some 0* € R? and ¢’ € R such that
1
F(9) = 5(9 —0")TH(O —6%)+ .
(To be proved in homework.) Of course, the ¢’ is irrelevant in the
optimization.
Therefore, W.L.O.G., consider

minimize F(0) = (6 — 60*)TH(0 — 6*),

1
0cR4 2
where H € R?*? is symmetric positive semidefinite. Then,
VF(0)=H(0—6%).
Of course, we won't have access to 6*, and the actual code for

computing the gradient will be something like VF(0) = HO +b. We are
simply stating the mathematical fact VF(0) = HO + b= H(0 — 0*).



GD on strongly convex quadratic: Convergence rate

Theorem

Consider gradient descent applied to convex quadratic optimization with
constant stepsize a, = . Let 0 < p < L < 0. Assume ul < H <X LI.
Then,

2k
HQka*HQg(max{|1fau|,|1faL\}> 10°—6*|2,  fork=0,1,....

Ifa=2/(u+ L), then,

2 \2k
k_gx)12 < _ 0 _ g2 < —
68 =02 < (1= =) N6 — 67> < exp

4k

)16 =6,

where k = L/u, fork =0,1,....

(When x = oo, the bound merely guarantees ||0% — 6*[|2 < [|0° — 6*|.)
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GD on strongly convex quadratic: Convergence rate

Proof. Note
OF —0* =01 —VF(H* 1) — 0
= (I —aH)(0 1 —0*) = (I —aH)*#° -6,
and, with A(H) being the set of eigenvalues of H,
min {1—aA}/ < min {1—aX}] 2] —aH < max {1 —al}] < max {1 —aA}l.
A€[p,L] AEA(H) AEA(H) A€lp,L]

This implies

2
2
— =< _ .
(I —aH) (Argiﬁ]ﬂ a)\|)I

Therefore,

6% — 65|12 = (6° — 0*)T(I — aH)?*(6° - 6%)

IN

2k
( max |1 — a)\|> 169 — %2
AE[p,L]

2k 0 N
< (max{|1 — apl, 1 = aL|}) " 6° - 07].
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GD on strongly convex quadratic: Iteration complexity

Corollary

Consider gradient descent applied to convex quadratic optimization such
that pI < H < LI. Consider a constant stepsize o, = 2/(pn+ L). If

Kk+1

K >
- 4

(log(1/e) + 2log [|16° — 6*)),

then,
105 —6%|]2 < e.

In optimization and numerical linear algebra, k = L/pu > 1 is called the
condition number of the problem, and it characterizes the difficulty of the
problem. In algorithm design, we want efficiency for harder problem
instances since easy problems are easy anyway. Therefore, we are
primarily interested in the algorithm’s performance when £ > 1.

The iteration complexity is O(x), when all other dependences are
ignored. We will soon see that O(y/k) can be obtained via “acceleration”
and that this complexity is optimal.



GD on cvx quadratics: Function values
Theorem

Consider gradient descent applied to convex quadratic optimization with
constant stepsize o, = 1/L. Assume ulI < H < LI. Then,

FO) ) < (1-0) " (P00 F0) < exp (< 22) (F(0°) - F(0%)
fork=0,1,....
Proof. We first note that

F(6F) — F(6*) = %(90 _ 0TI = aH)H(E — 6%)

and
F(69) — F(6*) = %(90 _ N TH(6° — 6%).

We conclude the statement with the same line of argument as before. [

(When s = 0o, bound merely guarantees F(6%) — F(6*) < F(6°) — F(6*).)



GD on cvx quadratics: Sublinear convergence

Theorem
Consider gradient descent applied to convex quadratic optimization with
constant stepsize o, = 1/L. Assume 0 < H < LI. Then,

L
F(0%) — F(*) < 8—k||aO — 0|2, fork=0,1,....

Proof. Again, note that
F(6%) — F(9*) = %(90 — 0TI — aH)*H(0° — 6%).

By a similar argument as before,

(I — aH)?*H < ()\Iél[foi)i A1 — aA)2k|)I.

ForA>0and 0<a<1/L,
[A(1 - a)\)%‘ < Aexp(—2kal) = —Qka)\ eXp( 2ka)

2ka
1
- Qk 3213{7 exp(-=7)} = Qeka - 4ka O




GD on cvx quadratics: lteration complexity

Corollary

Consider gradient descent applied to convex quadratic optimization with
constant stepsize ap, = 1/L. Assume 0 X H < LI. If

L
K> = 90_9* 2
then

F(6%) - F(0*) <e.

We attain a convergence rate of O(1/k) and iteration complexity
O(1/¢). We will soon see that accelerated methods achieve O(1/k?) and
O(1/+/¢) and that these are optimal.

Quadratic optimization
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Linear vs. sublinear convergence

In optimization, a rate of the form
performance measure < exp(—k/C),

where C' > 0, is (confusingly) referred to be both an exponential rate and
a linear rate.!

In contrast, a rate of the form
performance measure < =k

where v > 0, is said to be a sublinear rate.

IThis is not a Q-linear rate but rather an R-linear rate. We will not worry about this
distinction.
Quadratic optimization 14



Why gradient methods?

When F is quadratic, one can use direct methods (linear algebraic) to
solve the linear system VF(6) = 0. Why consider gradient descent?

» When 6 € R?, direct solves of VF () = 0 requires O(d?) cost,
whereas 081 = 9% — o VF(0%) requires O(d?) cost or less. (Cost
per iteration is dominated by the cost of evaluating VF.) If GD
converges to acceptable accuracy in fewer than O(d) iterations, GD
is worthwhile.

» The guarantees of convex quadratic optimization serve as a
conceptual baseline later when we try to get the same types of
guarantees for convex non-quadratic optimization.

Quadratic optimization

15



Convex optimization

Convex optimization

Outline
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Convex non-quadratic optimization

In convex optimization, we solve

minimize F(0),
gerd

where F': R4 — R is a convex function that is not necessarily a quadratic.

Since F' is non-quadratic, we can no longer use the linear algebraic tools.

Nevertheless, can we get the same rates as in the quadratic case?

We start by assuming F' is differentiable and we later consider the case
where F' is non-differentiable.

Convex optimization
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GD on smooth strongly convex F': Convergence rate

We first analyze the GD with a contraction argument.

Theorem
Let 0 < pu < L < oo. Let F: RY — R be L-smooth and p-strongly
convex. Consider GD with ay, = 1/L. Then, for k=0,1,...,

16% — 6% < (1 = 1/5)"(|6° — 0*||* < exp(~k/r)]|0° — 6*]]*.

Proof.
151 — 0% = [|6% — 0*[|* — 204 (VF(6%), 0" — %) + aZ[|VF (6]
<05 — 0|2 — an(2 — ok L)(VE(0"),0° — %)
< (1 - pa(2 — axL))[|0% — 0% = (1 = 1/k)|16" — 6*|1%,
where the first and second inequalities follows from
(VF(6) - VE(),6 ) > V(@) - VF@)I’, Y05 R
(VE@O) = VF®),0—n) > pl0—nl*,  voneR?

by L-smoothness and p-strong convexity, respectively. O



GD on smooth strongly convex F': Iteration complexity

Corollary
Let F: R? — R be L-smooth and j-strongly convex. Consider gradient
descent with constant stepsize o, = 1/L. Then, if

K > rlog(1/e) + 2log ||6° — 6*| = O(xlog(1/e)),

then
16" —0*|* <e.

Convex optimization 19



Polyak—tojasiewicz inequality

Lemma
Let F: RY — R be u-strongly convex, differentiable, and with a
minimizer 0*. Then,

IVE@)? > 2u(F () — F(67), V0 eR™

Proof. By p-s.c.,
F(n) 2 F(6) + (VF(6),n — 6) + 5 lln - 6]

. H 2 1 2
> inf {F F - —|n — =F) - —||VF .
> nlean{ (6) +{VE®),n—0) + 5 lln — 6l }=F() 2MIIV @l
(Infimum is attained at = 6 — iVF(G)) Plugging 1 = 0* into the

LHS, we arrive at the conclusion. O

This is called the Polyak—tojasiewicz (PL) inequality. Strong convexity
implies PL. However, the converse is not true.
Convex optimization 20



GD on smooth strongly convex F': Convergence rate

Using the Polyak—tojasiewicz inequality, we can obtain a rate on F.

Theorem
Let F: RY — R be L-smooth, convex, and u-P.L. Consider gradient
descent with constant stepsize o, = 1/L. Then, for k =0,1,...,

F(0%) = F(0%) < (1= 1/8)"(F(6°) = F(0")) < exp(—k/r)(F(6°) — F(67)).

Proof.
F(OFY) — F(6*) = F(6% — aVF(8%)) — F(6*)

< F(8) — a(VF@), VE@) + “EITF@ ) - )
= F(0") — F(6*) — o [VF(6)?

< (1= 1/w)(F(0%) = F(67)),

where the first inequality follow from L-smoothness and the third follows
from PL. O

Convex optimization 21



Specifically, the following inequality was used in the previous proof:

F(0"F) < F(0%) + (VF(0%), 05 — %) + gne’fﬂ —0%)?

F(6") - *IIVF(9’“)|I2

Convex optimization
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Complexity lower bound

Later, we will establish the following complexity lower bounds

Theorem

Consider first-order algorithms minimizing F: RY — R by only accessing
(F(6%),VF(6%)) fork=0,...,K — 1, where 6° is given and
0',...,05~1 arechosen by the algorithm.

there is an
L-smooth and u-strongly convex F' such that

F(6%) — F(6") > Cy exp(~Co K /\/R)[0° — 6.

We will discuss the precise conditions of this lower bound and prove it
later in this course.x For now, understand that the O(k) iteration
complexity of GD is suboptimal, and it can be accelerated.

Convex optimization
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Complexity lower bound

Later, we will establish the following complexity lower bounds

Theorem

Consider first-order algorithms minimizing F': R — R by only accessing
(F(6%),VF(6%)) fork=0,...,K — 1, where 6° is given and
6t,...,05~1 s chosen by the algorithm.

there is an L-smooth convex F'
such that o
F(0%) - F(6%) > f2||9O %>

Again, note that the O(1/k) rate of GD is suboptimal and that it can be
accelerated.

Convex optimization
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GD on smooth convex F': Convergence rate

Next, we establish a sublinear rate on gradient descent.

Theorem

Let F: R* — R be L-smooth convex. Assume F has a minimizer 6*.
Consider gradient descent with constant stepsize oy, = 1/L. Then, for
k=1,2,...,

L
F(6%) - F(67) < o160 = 07

Before we get to the direct analysis of GD, let us do a warm-up exercise
by considering a continuous-time model of gradient descent. Since

k+1 k k 9k+1 B ek k
Ol = gk — aVF(0F) = —— = _VF(0F),
«

for small enough o > 0, we can approximate the discrete-time dynamics
with the continuous-time gradient flow

O(t) = —VF((t)).

Convex optimization 25



Continuous-time analysis of GD

Consider the continuous-time dynamics
0(t) = ~VF(0(1))
Define the energy function (not an obvious choice)
* 1 *
E(t) = H(F(0) — F(6)) + 5116 — 6*||*.

Then, we can show E(t) is dissipative:

%5@) = F(0) — F(0*) + L{VF(0),6) + (0 — 0*,6)
= F(9) — F(0*) + (0* — 0, VF(0)) —t|VF(9)|* < 0.
Therefore, <0 by convexity

HF(6) ~ F(8)) < (1) < £(0) < 56(0) — 0]
and we conclude

* 1 * |2
F(6) = F(6) < 5116(0) - 6"|1*

Convex optimization
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Discrete-time analysis of GD

Proof. Recall
Okl = g% — oV F(6").

Define the energy function
L
Ex = K(F(0%) = F(07)) + 5 [[0" — 0|1,
Then, we show {&;}7°, is dissipative
Eps1 — Er = (k+ D)(F(OFY) — F(0%)) — k(F(0F) — F(6"))
— aL(F(0%),0% — 0*) + o”L||F(6")|?

E+1 1
< F(0%) - F(6*) - %HVF(@’C)H2 — (F(6%),0" — ") + EIIVF(G’“)II2
1 k+1 1
< ——|IVEO")|? = —||VF(0")||> + = ||V F(6%)|
< 2LHV (ol 5T IVF@)| +LIIV Gl

k
= ——||VF(")|? <
IVF@E)|? <0,

where the first and second inequalities follow from L-smoothness.
The conclusion follows from

L
E(F(0*) — F(6*) < & < & = §||e° —0%)2. O



Discrete-time analysis of GD

Specifically, the following inequalities were used in the previous proof:

F(Qk'H) < F(Qk) + <VF(9k> 9k+1 _ 0k> + §H9k+1 _ 9k||2

F(0%) ~ *IIVF(9'“)|I2

F(0%) = F(0*) = (VF(0"),0" - %) < *%IIVFW)IIQ-

Convex optimization
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Subgradient descent

Consider the optimization problem

minimize F'(0)
OeRrd

where F': R% — R is convex but not differentiable.

The subgradient descent method is

g~ € OF (6%)
9k+1 _ ok _ Olkgk
where #° € R? is a starting point and aq, a1, ... € R is a positive
sequence of stepsizes. With g* € F(6%), we assume that we are given a
subgradient. (We cannot choose a particular subgradient.)

(Some say the name subgradient “descent” is a misnomer since there is
no guarantee that the function value F(6*) is monotonically decreasing.)

Convex optimization
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Lipschitz continuity < bounded subgradients

Lemma
Let F: RY — R be convex. Then, F is G-Lipschitz continuous, i.e.,

|F(z) = F(y)l <Gl —yl2,  Va,yeR?

if and only if
[0F(2)]2 <G, VzeR™

To clarify, L-smoothness concerns Lipschitz continuity of VF.
Here, we are concerned with Lipschitz continuity of F'.

To clarify, ||0F (z)||2 < G means ||g|]l2 < G for all g € OF (z).

If F'is differentiable, then OF = VI, and this lemma follows from
standard calculus arguments. The proof of this lemma is beyond the
scope of this course.

Convex optimization
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Convergence rate of subgradient descent

Theorem

Let F': R* — R be a G-Lipschitz continuous convex function. Assume F'
has a minimizer 0*. Let §° € R? be a starting point and write

R =10 — 0*||5. Let K > 0 be the total iteration count. Then,
subgradient descent with the constant stepsize

R

ap =0 = ———
GVvK+1

exhibits the rate

GR
: kY _ (Y
oin F(07) - f(07) < e
and GR
%) — f(6%) € ——e,
1)~ £0°) <
where
_ 1 K
Convex optimization 0K = TH Z@k. 31



Proof. For £k =0,1,2,...,
16541 — 6713 = [16* — ag® — 673
= 16" — 6" — 2a(g", 0" — 6") + o g"|I3
< ||6% — 6*||2 — 2a(F(6%) — F(6%)) + o*G2.
Therefore,
20(F(0%) = F(0%)) < 0" = 013 = [|0°F" — 0%5 + oG,
With a telescoping sum argument, we get
K K
2a ) (F(0%) = F(6%) < [|6° = 0%]5 — [0 = 67|53+ Y o*G?
k=0
< R* + (K +1)a?G?,
and
R2 +a’G*(K+1)  GR

K
F(6%) = )
; 20(K + 1) K +1

Convex optimization



Therefore,

GR
K+1

<

K
1
: ky _ *) : ky *
oDin F(07) — F(67) K+1k_0051§§1KF(9) A
1 K
< F(0F) — F(6*
_Kszzo (0%) — F(67)

Likewise, using Jensen's inequality, we conclude

F(6%) - F(6%) < F(OF) — F(6*) <

=
Il

e
] =

K+1

0

Convex optimization

GR

K+1

33



Complexity lower bound

Subgradient descent exhibits a O(1/v/K) rate, which is slower than
gradient descent on L-smooth convex functions. This O(1/vK) rate
turns out to be optimal.

Theorem

Consider first-order algorithms minimizing F': R® — R by only accessing
(F(6%),g*), where g8 € OF (0%) is a subgradient, fork=0,..., K —1,
where 6° is given and ', ...,05~! is chosen by the algorithm.

there is an
G-Lipschitz convex F' such that

F(O") - F(0") > 0% — 0%,

\/7 |

Convex optimization
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Projected gradient descent
Consider the problem
minimize  F(0)
HecRd
subject to 6 € O,

where © C R? is a nonempty closed convex set and F: R — R is
convex and differentiable.

The method projected gradient method is

0k = Projg (6% — ap VE(0%))
for k=0,1,..., where the projection operator is defined as
I

1
Projg(6p) = argmin — |6 — 6,
gco 2
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Proximal gradient descent

Consider the problem

inimize F(6) + H(0
minimize () + H(0),

where F': R? — R is convex and differentiable and H: R? — R U {oo} is
CCP.

The method proximal gradient method is
081 = Prox,r g (0% — i, VF(6))

for k=0,1,..., where 0° € R, o), > 0 for k =0,1,... and the
proximal operator is defined as

1
Proxap (6) = argmin {aH (6) + = |6 — 6o]|*}.
feRrd 2

Convex optimization
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Prox generalizes projection

Let © C RY. Let do: RY — R U {oc} be defined as

0 ifdeo
5@(9){ o 00

We call §g the indicator function with respect to ©. If © CR% is a
nonempty closed convex set, then dg is CCP.

Using the indicator function, we can convert a constrained optimization
problem into an unconstrained one:

minimize  F(0)
HeR4
subjectto 6 € ©
is equivalent to
minimize F(0) + do(0).

0cR4

Convex optimization 37



Prox generalizes projection

If H=46g and a > 0, then

1
Prox, g (0o) = argmin {aH (0) + = |0 — 6p||*}
feRr? 2

.1 .
= argmin {§H9 — 0o||*} = Projg (6o).
0co

So, the proximal operator generalizes the projection operator, and
proximal GD generalizes projected GD.

Convex optimization

38



Prox is well defined

Lemma
If H: R? - RU {co} is CCP and o > 0, then

Proxar(6o) = argmin {aH (6) + %HQ — 6o}

feRd

is well defined, i.e., the argmin uniquely exists.
Proof. In Chapter 0.

Convex optimization
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Lemma
Let F: RY — R be CCP. Then

0* € argmin FF & 0 € 9F(6%).

Proof. Immediate from definition. ]

Lemma
Let F: RY — R be convex and differentiable and H: R? — R U {oco} be
CCP. Then

O(F + H)(0) = VF(0) + dH(0) = {VF(0) + g| g € IH(0)}.

Proof. In Chapter 0. O

Convex optimization
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Prox-grad encodes a solution as a fixed point

Lemma
If prox-GD starts at a solution, then it does not move, i.e.,

if 0° € argmin(F + H), then 6' = 6°.
Proof. Note,
6" = argmin {aH(0) + %He —(6° — aVE(0%)?)

feRd
is equivalent to

0€ adH(0Y) + 60" —0° + aVF(0").
If 6° is a solution, then 0 € 9H (6°) + VF(6°) and

0€ adH(0Y) + 0" — 0" + aVF(0").
holds with 8 = 6°, so ' = 6° is a minimizer of argmingcgra{---}. Since
the prox is uniquely defined, we conclude §' = 6°. O

Lemma

If prox-GD does not move, then it is at a solution, i.e.,

if 01 = 09, then 0° € argmin(F + H).

Proof. If ' = 6°, then 0 € 9H(0°) + VF(6°) and ¢° is a solution. [



Prox-GD: Convergence rate

Next, we establish a sublinear rate on proximal gradient descent.

Theorem

Let F: RY — R be L-smooth convex and H: RY — R U {cc} be CCP.
Assume F' 4+ H has a minimizer 0*. Consider proximal gradient descent
with constant stepsize ay, = 1/L. Then, fork =1,2,...,

F(0%) + H(0") — F(6%) — H(0") < %H@O e

Note that this is the same rate as GD.

Convex optimization
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Lemma
Let F: RY — R be L-smooth convex and H: R? — R U {oc} be CCP.
Let 6% = Proxy 4 (0 — £ VF(0)). Define G = F + H. Then for any

v € R, we have
L
GO*) + L0~ 0%, 0 —0) + Z10* 0] < C(p)
Corollary
With ¢ = 6, we have
+ Lo+ 2
G(O7) < G(O) — 1o~ —0|".

Corollary
With ¢ = 0* € argmin G, we have

L
GOT)—GO*)+LO—-07,0"—0) < —§||6Jr — 0%

Convex optimization 43



Proof. Since F'is L-smooth convex, we have
F(07) + H(0) < (07 —6,VF(9)) — §||9+ —0|I* + F(0) + H(6™).
By convexity, we have
F(0) < F(e) = (¢ — 0, VF(0)).
By the subgradient inequality, we have
H(O") < H(p)—(g.0—0"), g€OH(O").
The optimality condition for

T = argmin {H(ap) + %Hg@ — (0 — %VF(H)) Hz}
pERE
implies
OH(OT)+ L(OT —0) + VF(0) 30,
So
HOT) < H(p)+ (LT —0)+VF(0),p—0").

Combining the bounds, we conclude the stated result.

Convex optimization



Analysis of prox-GD

Proof. Define G(0) = F'(0) + H(0) — F(0*) — H(6*).

Define the energy function
k iy o Lok _ pep2
E"=kG(0 )+§||9 — 0%
If we show {£F}2°  is dissipative, then the conclusion follows from

L
kG(OF) < gk < £ = §||90 — 0|2
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Analysis of prox-GD

ngrl o Ek

— (k+ DGO — kG(OF) + Lo — 002 — Zjor — o2
2 2

= (k+1)GOFY) — kG(6%) + gwkﬂ — 0%, 0% 4k — 20%)

= (k+ 1)G(OF ) — kG(0%) + gnakﬂ — 082 + L(O"! — 0% 0F — %)

Using
L
G(9k+1) < G(@k) _ §||9k+1 _ QkHQ

and
L
G(9k+1) + L<9 _ 9k+179* _ 9k> < _§||9k+1 _ 9kH27

we conclude

gk+1 _ gk < _%k||9k+1 _ ekH2 <0.



Accelerated gradient method

Consider

minimize T
r€Rd f( ),

where f is L-smooth convex. The method

1
l,k+1 — yk o va(yk)

k—1
k+1 _ k+1 k+1 _ .k
y 1 z")
for k=0,1,..., where 20 = 4 € R?, is Nesterov's accelerated gradient

method (AGM).

Theorem
Assume the convex, L-smooth function f has a minimizer x*. Then
AGM converges with the rate

2L 0 _ .x[2
faty - pay < 2T o k—1a
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Convergence analysis of AGM

Lemma
Equivalent form of AGM:
k+1 . k
z =y - va(y )
kE+1
k1l _ ok _ k
z ST
2
k+1 _ (1 _ k+1 k+1
Y < k+2) S
fork=0,1,..., where z° = ° = 20 ¢ R?.

Proof. Follows from induction.

Convex optimization
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Preliminary observations. Define

k+1
O, = —
for k=—1,0,1,.... It is straightforward to verify

O — 0k <07y

for k=0,1,.... We will use the inequalities

P = £ + IV AEHIF <0

The first, (2), follows from L-smoothness, which implies

f(z) — %[|z — y*||? is concave as a function of z, which in turn implies

£@) — 2z~ oM < ) + (V). — o)

We plug in z = 2F™1 = y¥ — 1V f(y*) to get (2). The second and third

inequalities, (3) and (4), follow from convexity of f.



Convergence analysis of AGM

Define I
EM =07, (f(=") = f(=") + §||Zk —z*|%.
If we establish £F < &F~1 < ... < &9, then £F < £Y implies

B (f) ~ @) < % < €0 = T2 — .
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gkt _ gk

_ (f(m’““) i)+ inww’“)n?) 0L (") — f(a"))
(V). — e

202 (56M) @) 0 (@) = 6V S ("), 2+ — ")

= (6~ 00 (") — F(a") + s (£ (") - f(xk>>+<ei—e,%_le(m’“)ff(x*»
0V, 2 — ")

< @ - 00" ~ 1) + 0T~ 1)~ (V) — )

3),(4

< (0F = 0x)(VFR) 0 — ) + 0V FE), o — 2t) — 0V (YY), 25— 27
=0, (VF(y"), (1 —0)z" + 0ry" — %) def. of =¥ )

=

where the first equality follows from

2

L k * ek k
b) z -z va(y)

Lk = V), et B 9 s




Accelerated proximal gradient (FISTA)

Consider the problem

minimize  f(z) + g(x),
z€R4

where f is differentiable convex and g is CCP. The method

" = proxy (v — 1V f(y"))

kE—1
k+1 _ ktl k+1 _ ok
P =t L @ o)
for k=0,1,..., where 2° = 3y° € R?, is called the accelerated proximal

gradient method or fast iterative shrinkage-thresholding algorithm
(FISTA).
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Convergence analysis of FISTA

Theorem
Assume f is L-smooth convex and g is CCP. Assume f + g has a
minimizer x*. Then FISTA converges with the rate

2L||2° — %2
S 0 n

F(@®) + g(a¥) = f(a¥) — g(a¥) e . fork=1,2,....

Proof. Define 0), = ¥t! for k= —1,0,1,.... Let
k 2 k k * * L k * (12
EX =00, (f(a®) +g(z®) — f(a*) — g(x ))+5|\Z —x*||%
If we establish £ < £F~1 < ... < &9, then £F < £V implies
L
0r 1 (f(z") = fla*) <EF <€ = §||5100 —z*|.
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Convergence analysis of FISTA

Lemma
Equivalent form of FISTA:

= proxy, (vF - £VF(5"))

Zk+1 _ Zk + ak(karl o yk)
k+1 ( 1 ) k+1 Lkt
Y =|1l-—)2""" + —=2
k+1 k+1

fork=0,1,..., where z° = y° = 20 ¢ R?.

Proof. Follows from induction.
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Convergence analysis of FISTA

Preliminary observations. Define

for k= —1,0,1,.... It is straightforward to verify

07 — O < 07, (1)

fork=0,1,....

Let F' = f + g. We will use the inequalities

L

F(ah) = P(*) < L =y, 2™ = yf) = Dl — o)
L

F(z*1) — F(2%) < L{z® — yF, 2 — k) — b) [l — o)

which follows from plugging in ¢ = 2* and ¢ = z¥ into the lemma we
proved for the analysis of prox-grad.
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= 2(F(a") — F(a")) — 62_y(F(a") — F(a*")) + 225 — o) — L)% -

5|

= G2 (F(e™) = F(a")) = i1 (F(a") = F(2")

Lo (2! k _k o, LOR | ke k)2
+ LOk(z"" —y”, 2 —5E>+T||55 -y

L GR(P() — Pat)) — 0u(0 — 1)(F(*) — F(a™))

+L91% RHL_ kN2 L pp gkl gk ko
Okt 2 4 Lo o 2 )
. L6 -0
= (08 = 0)(F(") = F(a")) + 0u(F(a"") = F(z") + %’”Hm’““ -
Lo *
4 200 ot 1P 4 L0 — g 0 = (0 = Do o)
—_—

def. of zk

||

Y

2

k|2
|



(3)
< LOk(0 — 1) (2" — ", 2" — ¥y + 00 (F (") — F(2¥))
Lo *
+ T 2 — R 4 Lok (T — Oy — (0 — 1) — 2)

2
L0,

= 0k(F(2") = F(a")) + = 12" =17 + LOu(a™ — %, 9" — %)

<0.

where (e) follows from

L A2 L 3 Lo .
5 |7 ot — 0@ =y =S et 1P = Lo gt e TR a2

O



Strongly-convex AGM

Consider the problem

minimize x
nimize  f(z),

where f is u-strongly convex and L-smooth. The method
1
karl _ yk _ fvf(yk)

-1
JEH = gkt vk (@ — k)
Ve+1

for k=0,1,..., where 2° = 4 € R?, and k = L/p, is called the
strongly convex accelerated gradient method (SC-AGM).
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Theorem
Let 0 < pp < L < oco. Let f: RY — R be L-smooth and p-strongly
convex. Then, SC-AGM converges with the rate

Fa*) = f(a*) < #on _ e VR fork =01,

Proof. Let 2 = (1 + /k)y* — \/kz* and

k
1 %
k _ ky * MLk %2
e = (14 o) (P = fa) 4 Bl - )
for k=0,1,.... If we establish £¥ < ... < £9, then £F < £° implies

(1 : )k(f( k) f( *)) <—5k <— 50
\/E 1 :I; .
12

L
= £(@%) = f@*) + Ele® = 27| < Sle® — 27 + Ee® — 272

We conclude the statement with

<1 + \/El_1>_ < exp (\/Ek_1> < exp (\/g)



Stochastic gradient descent

Stochastic gradient descent

Outline
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Stochastic optimization

Consider the stochastic optimization problem

minimize E[f(z;w)] = F(x),

zERC w

where w is a random variable. In machine learning, such problems arise in
the finite-sum form

N
L, = 2
or
N
mlgelgdlze N;K(ﬂ(-&%ﬁ)
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Stochastic (sub)gradients

Under mild conditions, we have
VE(x) = VE[f(;w)] = E[V. f(;w)].

Therefore, V. f(z;w) is an unbiased estimate of VF(x), and we say
V. f(z;w) is a stocahstic gradient of F at x € R,

Let g, € Of(2;w) be a random subgradient at zz € R?. Then,

F(y) =E[f(y;w)] > ]g[f(m; W) + (9w, ¥ — 2)]

w

=F(z)+ (Elg),y —2), VyeR?

w

and E,[g.] € OF (), provided that E,[g.] is well defined. In this case,
we say g, € Of(x;w) is a stocahstic subgradient of F at z € R%.
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Stochastic (sub)gradient descent (SGD)

Consider the algorithm stochastic (sub)gradient descent (SGD)
B S

for k =0,1,..., where g* is a stochastic (sub)gradient of F' at x*.

More specifically, we assume that
Exlg"] € OF (%),

where
Ex[-] = E[- | 202t ,xk]

is the conditional expectation, conditioned on the iterates up to z*. We
will also assume that the conditional variance is bounded:

Vary,(g*) = Ex[|l¢* — Ex[g"]]?] < o2

Stochastic gradient descent
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Analysis of SGD

Theorem

Let F: R* — R be a G-Lipschitz continuous convex function. Assume F
has a minimizer z*. Let 2 € R? be a starting point. Let K > 0 be the
total iteration count. Assume the stochastic subgradient g* satisfies

Ek[gk] € 8F(gck)7 Vark(gk) < g2

for k =0,1,.... Then, SGD with the constant stepsize
o =
A = o =
VG2 +02VK +1

exhibits the rate

L VTP — ot

E[f() - /(@) —

)

where



Analysis of SGD

Proof. First,

Ex [llz"* = a*[3] = la* — 2* (13 - 2(Ex[g"], 21 — o) + @”Ea[llg" |’

< |l2* — 2|3 = 2a(F (a*) — F(a")) + o®(G* + ).
We take the total expectation on both sides to get
E[llz"*! —a*|3] < E[llz* - 2*|3] - 20E[F (") — F(z")] + o*(G* + 0°).

By the same telescoping-sum argument as in the (non-stochastic)
subgradient descent, we have

1 & < VG2 + 2R
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Projected stochastic gradient

Let C' C R? be a nonempty closed convex set. Consider the stochastic
optimization problem

minimize  E[f(z;w)] = F(x)
zERC w
subject to z € C|

where w is a random variable.
Consider the algorithm projected stochastic (sub)gradient descent (SGD)
k

2t = Proje(a* — akg®)

for k =0,1,..., where g* is a stochastic (sub)gradient of F' at x*.
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Analysis of projected SGD

Theorem
Let F: R? — R be a G-Lipschitz continuous convex function. Assume
r* € argmin, . F(x) exists. Let 2° € R be a starting point. Let
K > 0 be the total iteration count. Assume the stochastic subgradient
g* satisfies

Exlg"] € OF (), Vary(g") < o2

for k =0,1,.... Then, projected SGD with the constant stepsize
ol —als
A = =
VG2 +o2VK +1

exhibits the rate

V& F P2~ a*
K+1

E[F(z5) - F(2*)] <

)

where



Analysis of projected SGD

Proof. By nonexpansivity of projection,

lz*** = 2*|[3 = |Projc(«* — ag®) — Proj(z*)|3

k k 2
< [la" — ag” — 273
Now the analysis proceed the same as before

Ep [[la"* = 2*|[5] < Ex[llz" — ag® - 2*||3]
= |l2* — 2" |13 — 2a(Bx[g"], 2k — 27) + oEx[l|g"||*)
< |l2* = 2| - 20(F(a") = F(a")) + a*(G* + 0?).

O
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Complexity lower bound
Later we will establish a complexity lower bound showing that
1
(%)
VK

is the correct (optimal rate). This rate will remain the same under the
assumption that F'is L-smooth convex.

When F is strongly convex, a lower bound establishes that

1
°(%)
K
is the correct (optimal rate). In the following, we will carry out a simple
but slightly suboptimal analysis to show a rate of order

O(loiK)

Stochastic gradient descent
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Strongly convex SGD

Consider the stochastic optimization problem

minimize B[ (@:0)] + & |l2]* = F(x) + & |lo]”
subject to z € C,

where w is a random variable. We assume F' is Lipschitz continuous.
(F(x) + &||z||* cannot be Lipschitz continuous.)

Consider the stochastic (sub)gradient descent (SGD)

k+1 k

2F Y = 2% — g (¢F + pa®)

for k =0,1,..., where g* is a stochastic (sub)gradient of F at x*.
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Strongly convex SGD

Theorem

Let F: R* — R be a G-Lipschitz continuous convex function. Let x* be
the minimizer of F(x) + &||z|?. Let 2° € R be the starting point.
Assume the stochastic subgradient g* satisfies

Ex [gk] € 3F(xk), Vark(gk) < o?
for k =0,1,.... Then, SGD with stepsize

1

ap = ———
" u(k+1)
exhibits the rate

2(G* +0%) 1 +1log(k+1)
1 k+1 ’

E[F(z%) — F(a*)] <
where

1
=k s
X X .
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Proof. Let E[¢¥] = G* € OF(2*). Since 2° =0,
:,Ck+1 _ .’I:k _ Olk(gk +ka)

= (1 — agp)z® + arpu(—1£g")
k
= Zes(—ﬁgs)
s=0

for some convex combination {s}*_,. (So 6y, ...,0; > 0 and
B+ ---+ 60 = 1.) Using Jensen's inequality on this convex combination,
we get

E[llg* + pz"[?) < 2E[|lg"|1%] + 24E[||2*(|*]

k
< 2(|GH2 + ) + 242 3 0.E[]| - Lg°|[]
s=0
<2(G? +0?) +2(G* + 0%) = 4(G? + 0?)
fork=0,1,....
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Next,

Ei [[|z*" — 23]

= [[a* — 2*[|3 — 20 (Ex[g"] + pa®, 2* — %) + ojEi[llg" + pa®|’]

< la* — 23 — 200 (F (%) — F(a*) + gllxk —2*|?) + af4(G* + 0°)

< (1 agp)lla® — 2|3 — 20k (F(2") = F(2*)) + az4(G? + 0?)

for k =0,1,.... Rearranging the terms and plugging in o) = m
o o bk a2 Wk +1) 2(G* +0?)

F(xk) —F(2") < 7”%]9 - ||§ - TEk [kaﬂ - x*||§] + W

With a telescoping sum argument, we have

k k

2(G? 2(G? +

S F@t) - F@*) < +°) Z %) (1 + log(k + 1)),
s=0 s=0 5+ H

Finally, we conclude with Jensen's inequality. O

Stochastic gradient descent 73



	Quadratic optimization
	Convex optimization
	Stochastic gradient descent

