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“...in fact, the great watershed in optimization isn’t between lin-
earity and nonlinearity, but convexity and nonconvexity.”

— R. Tyrrell Rockafellar, SIAM Review, 1993 —



Risk decomposition

Let
θ⋆ ∈ argmin

θ∈Rp

R[fθ], θ̂⋆ ∈ argmin
θ̂∈Rp

R̂[fθ̂].

Then,

R[fθ̂]−R⋆ = (R[fθ̂]− R̂[fθ̂])︸ ︷︷ ︸
=Estimation error

+(R̂[fθ⋆ ]−R[fθ⋆ ])︸ ︷︷ ︸
=Estimation error

(R[fθ⋆ ]−R⋆)︸ ︷︷ ︸
=Approximation error

+(R̂[fθ̂]− R̂[fθ⋆ ])︸ ︷︷ ︸
=Optimization error

≤ (R[fθ̂]− R̂[fθ̂]) + (R̂[fθ⋆ ]−R[fθ⋆ ])

(R[fθ⋆ ]−R⋆) + (R̂[fθ̂]− R̂[fθ̂⋆ ])︸ ︷︷ ︸
=Optimization error ≥ 0

.

We now discuss algorithms for solving

minimize
θ̂∈Rd

R̂[fθ̂].
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Gradient descent

Consider the optimization problem

minimize
θ∈Rd

F (θ)

where F : Rd → R is differentiable.

We consider gradient descent

θk+1 = θk − αk∇F (θk)

where θ0 ∈ Rd is a starting point and α0, α1, . . . ∈ R is a positive
sequence of stepsizes.
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Least-squares to standard quadratic form

Consider the least-squares problem

minimize
θ∈Rd

1
2∥Φθ − Y ∥2,

where Φ ∈ RN×d and Y ∈ Rd. Let θ⋆ = Φ†Y . Then,

1

2
∥Φθ − Y ∥2 =

1

2
∥Φ(θ − θ⋆) + Φθ⋆ − Y ∥2

=
1

2
∥Φ(θ − θ⋆)∥2 + (θ − θ⋆)⊺ Φ⊺(ΦΦ† − I)︸ ︷︷ ︸

=0

Y +
1

2
∥Φθ⋆ − Y ∥2︸ ︷︷ ︸

def
= c

=
1

2
(θ − θ⋆)⊺ Φ⊺Φ︸︷︷︸

def
=H

(θ − θ⋆) + c.

Note that H ∈ Rd×d is symmetric positive semidefinite.
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Convex quadratic optimization

More generally, consider the optimization problem

minimize
θ∈Rd

F (θ) = 1
2θ

⊺Hθ + b⊺θ + c,

where H ∈ Rd×d is symmetric positive semidefinite, b ∈ Rd, and c ∈ R.
Then

∇F (θ) = Hθ + b.

Note that if θ⊺Hθ + b⊺θ + c had an asymmetric H ∈ Rd×d, then the
function is equal to

1

2
θ⊺(H +H⊺)θ + b⊺θ + c.

So there is no loss of generality in assuming H ∈ Rd×d is symmetric. This
loss function is convex if and only if H ⪰ 0. (To be proved in homework.)
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Convex quadratic optimization in standard form

For

F (θ) =
1

2
θ⊺Hθ + b⊺θ + c,

there exists some θ⋆ ∈ Rd and c′ ∈ R such that

F (θ) =
1

2
(θ − θ⋆)⊺H(θ − θ⋆) + c′.

(To be proved in homework.) Of course, the c′ is irrelevant in the
optimization.

Therefore, W.L.O.G., consider

minimize
θ∈Rd

F (θ) = 1
2 (θ − θ⋆)⊺H(θ − θ⋆),

where H ∈ Rd×d is symmetric positive semidefinite. Then,

∇F (θ) = H(θ − θ⋆).

Of course, we won’t have access to θ⋆, and the actual code for
computing the gradient will be something like ∇F (θ) = Hθ + b. We are
simply stating the mathematical fact ∇F (θ) = Hθ + b = H(θ − θ⋆).



GD on strongly convex quadratic: Convergence rate

Theorem
Consider gradient descent applied to convex quadratic optimization with
constant stepsize αk = α. Let 0 < µ ≤ L < ∞. Assume µI ⪯ H ⪯ LI.
Then,

∥θk−θ⋆∥2 ≤
(
max{|1−αµ|, |1−αL|}

)2k

∥θ0−θ⋆∥2, for k = 0, 1, . . . .

If α = 2/(µ+ L), then,

∥θk − θ⋆∥2 ≤
(
1− 2

κ+ 1

)2k

∥θ0 − θ⋆∥2 ≤ exp
(
− 4k

κ+ 1

)
∥θ0 − θ⋆∥2,

where κ = L/µ, for k = 0, 1, . . . .

(When κ = ∞, the bound merely guarantees ∥θk − θ⋆∥2 ≤ ∥θ0 − θ⋆∥.)
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GD on strongly convex quadratic: Convergence rate

Proof. Note

θk − θ⋆ = θk−1 − α∇F (θk−1)− θ⋆

= (I − αH)(θk−1 − θ⋆) = (I − αH)k(θ0 − θ⋆),

and, with Λ(H) being the set of eigenvalues of H,
min

λ∈[µ,L]
{1− αλ}I ⪯ min

λ∈Λ(H)
{1− αλ}I ⪯ I − αH ⪯ max

λ∈Λ(H)
{1− αλ}I ⪯ max

λ∈[µ,L]
{1− αλ}I.

This implies

(I − αH)2 ⪯
(

max
λ∈[µ,L]

|1− αλ|
)2

I.

Therefore,

∥θk − θ⋆∥2 = (θ0 − θ⋆)⊺(I − αH)2k(θ0 − θ⋆)

≤
(

max
λ∈[µ,L]

|1− αλ|
)2k

∥θ0 − θ⋆∥2

≤
(
max{|1− αµ|, |1− αL|}

)2k

∥θ0 − θ⋆∥.
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GD on strongly convex quadratic: Iteration complexity

Corollary
Consider gradient descent applied to convex quadratic optimization such
that µI ⪯ H ⪯ LI. Consider a constant stepsize αk = 2/(µ+ L). If

K ≥ κ+ 1

4

(
log(1/ε) + 2 log ∥θ0 − θ⋆∥

)
,

then,
∥θK − θ⋆∥2 ≤ ε.

In optimization and numerical linear algebra, κ = L/µ ≥ 1 is called the
condition number of the problem, and it characterizes the difficulty of the
problem. In algorithm design, we want efficiency for harder problem
instances since easy problems are easy anyway. Therefore, we are
primarily interested in the algorithm’s performance when κ ≫ 1.

The iteration complexity is O(κ), when all other dependences are
ignored. We will soon see that O(

√
κ) can be obtained via “acceleration”

and that this complexity is optimal.



GD on cvx quadratics: Function values

Theorem
Consider gradient descent applied to convex quadratic optimization with
constant stepsize αk = 1/L. Assume µI ⪯ H ⪯ LI. Then,

F (θk)−F (θ⋆) ≤
(
1− 1

κ

)2k

(F (θ0)−F (θ⋆)) ≤ exp
(
−2k

κ

)
(F (θ0)−F (θ⋆))

for k = 0, 1, . . . .

Proof. We first note that

F (θk)− F (θ⋆) =
1

2
(θ0 − θ⋆)⊺(I − αH)2kH(θ0 − θ⋆)

and

F (θ0)− F (θ⋆) =
1

2
(θ0 − θ⋆)⊺H(θ0 − θ⋆).

We conclude the statement with the same line of argument as before.

(When κ = ∞, bound merely guarantees F (θk)− F (θ⋆) ≤ F (θ0)− F (θ⋆).)



GD on cvx quadratics: Sublinear convergence

Theorem
Consider gradient descent applied to convex quadratic optimization with
constant stepsize αk = 1/L. Assume 0 ⪯ H ⪯ LI. Then,

F (θk)− F (θ⋆) ≤ L

8k
∥θ0 − θ⋆∥2, for k = 0, 1, . . . .

Proof. Again, note that

F (θk)− F (θ⋆) =
1

2
(θ0 − θ⋆)⊺(I − αH)2kH(θ0 − θ⋆).

By a similar argument as before,

(I − αH)2kH ⪯
(

max
λ∈[0,L]

∣∣λ(1− αλ)2k
∣∣)I.

For λ ≥ 0 and 0 ≤ α ≤ 1/L,∣∣λ(1− αλ)2k
∣∣ ≤ λ exp(−2kαλ) =

1

2kα
2kαλ exp(−2kαλ)

≤ 1

2kα
sup
τ≥0

{τ exp(−τ)} =
1

2ekα
≤ 1

4kα
.



GD on cvx quadratics: Iteration complexity

Corollary
Consider gradient descent applied to convex quadratic optimization with
constant stepsize αk = 1/L. Assume 0 ⪯ H ⪯ LI. If

K ≥ L

8ε
∥θ0 − θ⋆∥2,

then
F (θk)− F (θ⋆) ≤ ε.

We attain a convergence rate of O(1/k) and iteration complexity
O(1/ε). We will soon see that accelerated methods achieve O(1/k2) and
O(1/

√
ε) and that these are optimal.
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Linear vs. sublinear convergence

In optimization, a rate of the form

performance measure ≤ exp(−k/C),

where C > 0, is (confusingly) referred to be both an exponential rate and
a linear rate.1

In contrast, a rate of the form

performance measure ≤ C

kγ
,

where γ > 0, is said to be a sublinear rate.

1This is not a Q-linear rate but rather an R-linear rate. We will not worry about this
distinction.
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Why gradient methods?

When F is quadratic, one can use direct methods (linear algebraic) to
solve the linear system ∇F (θ) = 0. Why consider gradient descent?

▶ When θ ∈ Rd, direct solves of ∇F (θ) = 0 requires O(d3) cost,
whereas θk+1 = θk − αk∇F (θk) requires O(d2) cost or less. (Cost
per iteration is dominated by the cost of evaluating ∇F .) If GD
converges to acceptable accuracy in fewer than O(d) iterations, GD
is worthwhile.

▶ The guarantees of convex quadratic optimization serve as a
conceptual baseline later when we try to get the same types of
guarantees for convex non-quadratic optimization.
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Convex non-quadratic optimization

In convex optimization, we solve

minimize
θ∈Rd

F (θ),

where F : Rd → R is a convex function that is not necessarily a quadratic.

Since F is non-quadratic, we can no longer use the linear algebraic tools.
Nevertheless, can we get the same rates as in the quadratic case?

We start by assuming F is differentiable and we later consider the case
where F is non-differentiable.
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GD on smooth strongly convex F : Convergence rate

We first analyze the GD with a contraction argument.

Theorem
Let 0 < µ ≤ L < ∞. Let F : Rd → R be L-smooth and µ-strongly
convex. Consider GD with αk = 1/L. Then, for k = 0, 1, . . . ,

∥θk − θ⋆∥2 ≤ (1− 1/κ)k∥θ0 − θ⋆∥2 ≤ exp(−k/κ)∥θ0 − θ⋆∥2.

Proof.

∥θk+1 − θ⋆∥2 = ∥θk − θ⋆∥2 − 2αk⟨∇F (θk), θk − θ⋆⟩+ α2
k∥∇F (θk)∥2

≤ ∥θk − θ⋆∥2 − αk(2− αkL)⟨∇F (θk), θk − θ⋆⟩
≤ (1− µαk(2− αkL))∥θk − θ⋆∥2 = (1− 1/κ)∥θk − θ⋆∥2,

where the first and second inequalities follows from

⟨∇F (θ)−∇F (η), θ − η⟩ ≥ 1

L
∥∇F (θ)−∇F (η)∥2, ∀ θ, η ∈ Rd

⟨∇F (θ)−∇F (η), θ − η⟩ ≥ µ∥θ − η∥2, ∀ θ, η ∈ Rd

by L-smoothness and µ-strong convexity, respectively.



GD on smooth strongly convex F : Iteration complexity

Corollary
Let F : Rd → R be L-smooth and µ-strongly convex. Consider gradient
descent with constant stepsize αk = 1/L. Then, if

K ≥ κ log(1/ε) + 2 log ∥θ0 − θ⋆∥ = O(κ log(1/ε)),

then
∥θk − θ⋆∥2 ≤ ε.
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Polyak–  Lojasiewicz inequality

Lemma
Let F : Rd → R be µ-strongly convex, differentiable, and with a
minimizer θ⋆. Then,

∥∇F (θ)∥2 ≥ 2µ(F (θ)− F (θ⋆)), ∀ θ ∈ Rd.

Proof. By µ-s.c.,

F (η) ≥ F (θ) + ⟨∇F (θ), η − θ⟩+ µ

2
∥η − θ∥2

≥ inf
η∈Rd

{
F (θ) + ⟨∇F (θ), η − θ⟩+ µ

2
∥η − θ∥2

}
= F (θ)− 1

2µ
∥∇F (θ)∥2.

(Infimum is attained at η = θ − 1
µ∇F (θ).) Plugging η = θ⋆ into the

LHS, we arrive at the conclusion.

This is called the Polyak–  Lojasiewicz (PL) inequality. Strong convexity
implies PL. However, the converse is not true.
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GD on smooth strongly convex F : Convergence rate

Using the Polyak–  Lojasiewicz inequality, we can obtain a rate on F .

Theorem
Let F : Rd → R be L-smooth, convex, and µ-P. L. Consider gradient
descent with constant stepsize αk = 1/L. Then, for k = 0, 1, . . . ,

F (θk)− F (θ⋆) ≤ (1− 1/κ)k(F (θ0)− F (θ⋆)) ≤ exp(−k/κ)(F (θ0)− F (θ⋆)).

Proof.

F (θk+1)− F (θ⋆) = F (θk − α∇F (θk))− F (θ⋆)

≤ F (θk)− α⟨∇F (θk),∇F (θk))⟩+ α2L

2
∥∇F (θk))∥2 − F (θ⋆)

= F (θk)− F (θ⋆)− 1

2L
∥∇F (θk))∥2

≤ (1− 1/κ)(F (θk)− F (θ⋆)),

where the first inequality follow from L-smoothness and the third follows
from PL.
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Specifically, the following inequality was used in the previous proof:

F (θk+1) ≤ F (θk) + ⟨∇F (θk), θk+1 − θk⟩+ L

2
∥θk+1 − θk∥2

= F (θk)− 1

2L
∥∇F (θk)∥2
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Complexity lower bound

Later, we will establish the following complexity lower bounds

Theorem
Consider first-order algorithms minimizing F : Rd → R by only accessing
(F (θk),∇F (θk)) for k = 0, . . . ,K − 1, where θ0 is given and
θ1, . . . , θK−1 arechosen by the algorithm. Denote the output of the
algorithm as θK . Then, there are constants C1 > 0 and C2 > 0 such
that the following hold: for any K and sufficiently large d, there is an
L-smooth and µ-strongly convex F such that

F (θK)− F (θ⋆) ≥ C1 exp(−C2K/
√
κ)∥θ0 − θ⋆∥2.

We will discuss the precise conditions of this lower bound and prove it
later in this course.x For now, understand that the O(κ) iteration
complexity of GD is suboptimal, and it can be accelerated.
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Complexity lower bound

Later, we will establish the following complexity lower bounds

Theorem
Consider first-order algorithms minimizing F : Rd → R by only accessing
(F (θk),∇F (θk)) for k = 0, . . . ,K − 1, where θ0 is given and
θ1, . . . , θK−1 is chosen by the algorithm. Denote the output of the
algorithm as θK . Then, there is a constant C > 0 such that the following
hold: for any K and sufficiently large d, there is an L-smooth convex F
such that

F (θK)− F (θ⋆) ≥ C

k2
∥θ0 − θ⋆∥2.

Again, note that the O(1/k) rate of GD is suboptimal and that it can be
accelerated.
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GD on smooth convex F : Convergence rate

Next, we establish a sublinear rate on gradient descent.

Theorem
Let F : Rd → R be L-smooth convex. Assume F has a minimizer θ⋆.
Consider gradient descent with constant stepsize αk = 1/L. Then, for
k = 1, 2, . . . ,

F (θk)− F (θ⋆) ≤ L

2k
∥θ0 − θ⋆∥2.

Before we get to the direct analysis of GD, let us do a warm-up exercise
by considering a continuous-time model of gradient descent. Since

θk+1 = θk − α∇F (θk) ⇒ θk+1 − θk

α
= −∇F (θk),

for small enough α > 0, we can approximate the discrete-time dynamics
with the continuous-time gradient flow

θ̇(t) = −∇F (θ(t)).
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Continuous-time analysis of GD

Consider the continuous-time dynamics

θ̇(t) = −∇F (θ(t))

Define the energy function (not an obvious choice)

E(t) = t(F (θ)− F (θ⋆)) +
1

2
∥θ − θ⋆∥2.

Then, we can show E(t) is dissipative:

d

dt
E(t) = F (θ)− F (θ⋆) + t⟨∇F (θ), θ̇⟩+ ⟨θ − θ⋆, θ̇⟩

= F (θ)− F (θ⋆) + ⟨θ⋆ − θ,∇F (θ)⟩︸ ︷︷ ︸
≤0 by convexity

−t∥∇F (θ)∥2 ≤ 0.

Therefore,

t(F (θ)− F (θ⋆)) ≤ E(t) ≤ E(0) ≤ 1

2
∥θ(0)− θ⋆∥2

and we conclude

F (θ)− F (θ⋆) ≤ 1

2t
∥θ(0)− θ⋆∥2.
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Discrete-time analysis of GD

Proof. Recall
θk+1 = θk − α∇F (θk).

Define the energy function

Ek = k(F (θk)− F (θ⋆)) +
L

2
∥θk − θ⋆∥2.

Then, we show {Ek}∞k=0 is dissipative

Ek+1 − Ek = (k + 1)(F (θk+1)− F (θ⋆))− k(F (θk)− F (θ⋆))

− αL⟨F (θk), θk − θ⋆⟩+ α2L∥F (θk)∥2

≤ F (θk)− F (θ⋆)− k + 1

2L
∥∇F (θk)∥2 − ⟨F (θk), θk − θ⋆⟩+ 1

L
∥∇F (θk)∥2

≤ − 1

2L
∥∇F (θk)∥2 − k + 1

2L
∥∇F (θk)∥2 + 1

L
∥∇F (θk)∥2

= − k

2L
∥∇F (θk)∥2 ≤ 0,

where the first and second inequalities follow from L-smoothness.
The conclusion follows from

k(F (θk)− F (θ⋆)) ≤ Ek ≤ E0 =
L

2
∥θ0 − θ⋆∥2.



Discrete-time analysis of GD

Specifically, the following inequalities were used in the previous proof:

F (θk+1) ≤ F (θk) + ⟨∇F (θk), θk+1 − θk⟩+ L

2
∥θk+1 − θk∥2

= F (θk)− 1

2L
∥∇F (θk)∥2

F (θk)− F (θ⋆)− ⟨∇F (θk), θk − θ⋆⟩ ≤ − 1

2L
∥∇F (θ)∥2.
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Subgradient descent

Consider the optimization problem

minimize
θ∈Rd

F (θ)

where F : Rd → R is convex but not differentiable.

The subgradient descent method is

gk ∈ ∂F (θk)

θk+1 = θk − αkg
k

where θ0 ∈ Rd is a starting point and α0, α1, . . . ∈ R is a positive
sequence of stepsizes. With gk ∈ ∂F (θk), we assume that we are given a
subgradient. (We cannot choose a particular subgradient.)

(Some say the name subgradient “descent” is a misnomer since there is
no guarantee that the function value F (θk) is monotonically decreasing.)
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Lipschitz continuity ⇔ bounded subgradients

Lemma
Let F : Rd → R be convex. Then, F is G-Lipschitz continuous, i.e.,

|F (x)− F (y)| ≤ G∥x− y∥2, ∀x, y ∈ Rd

if and only if
∥∂F (x)∥2 ≤ G, ∀x ∈ Rd.

To clarify, L-smoothness concerns Lipschitz continuity of ∇F .
Here, we are concerned with Lipschitz continuity of F .

To clarify, ∥∂F (x)∥2 ≤ G means ∥g∥2 ≤ G for all g ∈ ∂F (x).

If F is differentiable, then ∂F = ∇F , and this lemma follows from
standard calculus arguments. The proof of this lemma is beyond the
scope of this course.
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Convergence rate of subgradient descent

Theorem
Let F : Rd → R be a G-Lipschitz continuous convex function. Assume F
has a minimizer θ⋆. Let θ0 ∈ Rd be a starting point and write
R = ∥θ0 − θ⋆∥2. Let K > 0 be the total iteration count. Then,
subgradient descent with the constant stepsize

αk = α =
R

G
√
K + 1

exhibits the rate

min
0≤k≤K

F (θk)− f(θ⋆) ≤ GR√
K + 1

and

f(θ̄K)− f(θ⋆) ≤ GR√
K + 1

,

where

θ̄K =
1

K + 1

K∑
k=0

θk.Convex optimization 31



Proof. For k = 0, 1, 2, . . . ,

∥θk+1 − θ⋆∥22 = ∥θk − αgk − θ⋆∥22
= ∥θk − θ⋆∥22 − 2α⟨gk, θk − θ⋆⟩+ α2∥gk∥22
≤ ∥θk − θ⋆∥22 − 2α(F (θk)− F (θ⋆)) + α2G2.

Therefore,

2α(F (θk)− F (θ⋆)) ≤ ∥θk − θ⋆∥22 − ∥θk+1 − θ⋆∥22 + α2G2.

With a telescoping sum argument, we get

2α

K∑
k=0

(F (θk)− F (θ⋆)) ≤ ∥θ0 − θ⋆∥22 − ∥θK+1 − θ⋆∥22 +
K∑

k=0

α2G2

≤ R2 + (K + 1)α2G2,

and

1

K + 1

K∑
k=0

F (θk)− F (θ⋆) ≤ R2 + α2G2(K + 1)

2α(K + 1)
=

GR√
K + 1

.
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Therefore,

min
0≤k≤K

F (θk)− F (θ⋆) =
1

K + 1

K∑
k=0

min
0≤k≤K

F (θk)− F (θ⋆)

≤ 1

K + 1

K∑
k=0

F (θk)− F (θ⋆) ≤ GR√
K + 1

.

Likewise, using Jensen’s inequality, we conclude

F (θ̄K)− F (θ⋆) ≤ 1

K + 1

K∑
k=0

F (θk)− F (θ⋆) ≤ GR√
K + 1

.
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Complexity lower bound

Subgradient descent exhibits a O(1/
√
K) rate, which is slower than

gradient descent on L-smooth convex functions. This O(1/
√
K) rate

turns out to be optimal.

Theorem
Consider first-order algorithms minimizing F : Rd → R by only accessing
(F (θk), gk), where gk ∈ ∂F (θk) is a subgradient, for k = 0, . . . ,K − 1,
where θ0 is given and θ1, . . . , θK−1 is chosen by the algorithm. Denote
the output of the algorithm as θK . Then, there is a constant C > 0 such
that the following hold: for any K and sufficiently large d, there is an
G-Lipschitz convex F such that

F (θK)− F (θ⋆) ≥ C√
K

∥θ0 − θ⋆∥2.
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Projected gradient descent

Consider the problem
minimize

θ∈Rd
F (θ)

subject to θ ∈ Θ,

where Θ ⊆ Rd is a nonempty closed convex set and F : Rd → R is
convex and differentiable.

The method projected gradient method is

θk+1 = ProjΘ(θ
k − αk∇F (θk))

for k = 0, 1, . . . , where the projection operator is defined as

ProjΘ(θ0) = argmin
θ∈Θ

1

2
∥θ − θ0∥2.
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Proximal gradient descent

Consider the problem

minimize
θ∈Rd

F (θ) +H(θ),

where F : Rd → R is convex and differentiable and H : Rd → R ∪ {∞} is
CCP.

The method proximal gradient method is

θk+1 = ProxαkH(θk − αk∇F (θk))

for k = 0, 1, . . . , where θ0 ∈ Rd, αk > 0 for k = 0, 1, . . . and the
proximal operator is defined as

ProxαH(θ0) = argmin
θ∈Rd

{
αH(θ) +

1

2
∥θ − θ0∥2

}
.
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Prox generalizes projection

Let Θ ⊆ Rd. Let δΘ : Rd → R ∪ {∞} be defined as

δΘ(θ) =

{
0 if θ ∈ Θ
∞ if θ /∈ Θ

We call δΘ the indicator function with respect to Θ. If Θ ⊆ Rd is a
nonempty closed convex set, then δΘ is CCP.

Using the indicator function, we can convert a constrained optimization
problem into an unconstrained one:

minimize
θ∈Rd

F (θ)

subject to θ ∈ Θ

is equivalent to
minimize

θ∈Rd
F (θ) + δΘ(θ).
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Prox generalizes projection

If H = δΘ and α > 0, then

ProxαH(θ0) = argmin
θ∈Rd

{
αH(θ) +

1

2
∥θ − θ0∥2

}
= argmin

θ∈Θ

{1
2
∥θ − θ0∥2

}
= ProjΘ(θ0).

So, the proximal operator generalizes the projection operator, and
proximal GD generalizes projected GD.
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Prox is well defined

Lemma
If H : Rd → R ∪ {∞} is CCP and α > 0, then

ProxαH(θ0) = argmin
θ∈Rd

{
αH(θ) +

1

2
∥θ − θ0∥2

}
.

is well defined, i.e., the argmin uniquely exists.

Proof. In Chapter 0.
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Lemma
Let F : Rd → R be CCP. Then

θ⋆ ∈ argminF ⇔ 0 ∈ ∂F (θ⋆).

Proof. Immediate from definition.

Lemma
Let F : Rd → R be convex and differentiable and H : Rd → R ∪ {∞} be
CCP. Then

∂(F +H)(θ) = ∇F (θ) + ∂H(θ) = {∇F (θ) + g | g ∈ ∂H(θ)}.

Proof. In Chapter 0.
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Prox-grad encodes a solution as a fixed point

Lemma
If prox-GD starts at a solution, then it does not move, i.e.,
if θ0 ∈ argmin(F +H), then θ1 = θ0.

Proof. Note,

θ1 = argmin
θ∈Rd

{
αH(θ) +

1

2
∥θ − (θ0 − α∇F (θ0))∥2

}
is equivalent to

0 ∈ α∂H(θ1) + θ1 − θ0 + α∇F (θ0).

If θ0 is a solution, then 0 ∈ ∂H(θ0) +∇F (θ0) and

0 ∈ α∂H(θ1) + θ1 − θ0 + α∇F (θ0).

holds with θ1 = θ0, so θ1 = θ0 is a minimizer of argminθ∈Rd{· · · }. Since
the prox is uniquely defined, we conclude θ1 = θ0.

Lemma
If prox-GD does not move, then it is at a solution, i.e.,
if θ1 = θ0, then θ0 ∈ argmin(F +H).

Proof. If θ1 = θ0, then 0 ∈ ∂H(θ0) +∇F (θ0) and θ0 is a solution.



Prox-GD: Convergence rate

Next, we establish a sublinear rate on proximal gradient descent.

Theorem
Let F : Rd → R be L-smooth convex and H : Rd → R ∪ {∞} be CCP.
Assume F +H has a minimizer θ⋆. Consider proximal gradient descent
with constant stepsize αk = 1/L. Then, for k = 1, 2, . . . ,

F (θk) +H(θk)− F (θ⋆)−H(θ⋆) ≤ L

2k
∥θ0 − θ⋆∥2.

Note that this is the same rate as GD.
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Lemma
Let F : Rd → R be L-smooth convex and H : Rd → R ∪ {∞} be CCP.
Let θ+ = Prox 1

LH

(
θ − 1

L∇F (θ)
)
. Define G = F +H. Then for any

φ ∈ Rd, we have

G(θ+) + L⟨θ − θ+, φ− θ⟩+ L

2
∥θ+ − θ∥2 ≤ G(φ).

Corollary
With φ = θ, we have

G(θ+) ≤ G(θ)− L

2
∥θ+ − θ∥2.

Corollary
With φ = θ⋆ ∈ argminG, we have

G(θ+)−G(θ⋆) + L⟨θ − θ+, θ⋆ − θ⟩ ≤ −L

2
∥θ+ − θ∥2.

Convex optimization 43



Proof. Since F is L-smooth convex, we have

F (θ+) +H(θ+) ≤ ⟨θ+ − θ,∇F (θ)⟩ − L

2
∥θ+ − θ∥2 + F (θ) +H(θ+).

By convexity, we have

F (θ) ≤ F (φ)− ⟨φ− θ,∇F (θ)⟩.

By the subgradient inequality, we have

H(θ+) ≤ H(φ)− ⟨g, φ− θ+⟩, g ∈ ∂H(θ+).

The optimality condition for

θ+ = argmin
φ∈Rd

{
H(φ) + L

2

∥∥φ−
(
θ − 1

L∇F (θ)
)∥∥2}

implies
∂H(θ+) + L(θ+ − θ) +∇F (θ) ∋ 0,

So
H(θ+) ≤ H(φ) + ⟨L(θ+ − θ) +∇F (θ), φ− θ+⟩.

Combining the bounds, we conclude the stated result.
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Analysis of prox-GD

Proof. Define G(θ) = F (θ) +H(θ)− F (θ⋆)−H(θ⋆).

Define the energy function

Ek = kG(θk) +
L

2
∥θk − θ⋆∥2.

If we show {Ek}∞k=0 is dissipative, then the conclusion follows from

kG(θk) ≤ Ek ≤ E0 =
L

2
∥θ0 − θ⋆∥2.
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Analysis of prox-GD

Ek+1 − Ek

= (k + 1)G(θk+1)− kG(θk) +
L

2
∥θk+1 − θ⋆∥2 − L

2
∥θk − θ⋆∥2

= (k + 1)G(θk+1)− kG(θk) +
L

2
⟨θk+1 − θk, θk+1 + θk − 2θ⋆⟩

= (k + 1)G(θk+1)− kG(θk) +
L

2
∥θk+1 − θk∥2 + L⟨θk+1 − θk, θk − θ⋆⟩

Using

G(θk+1) ≤ G(θk)− L

2
∥θk+1 − θk∥2

and

G(θk+1) + L⟨θ − θk+1, θ⋆ − θk⟩ ≤ −L

2
∥θk+1 − θk∥2,

we conclude

Ek+1 − Ek ≤ −Lk

2
∥θk+1 − θk∥2 ≤ 0.



Accelerated gradient method

Consider

minimize
x∈Rd

f(x),

where f is L-smooth convex. The method

xk+1 = yk − 1

L
∇f(yk)

yk+1 = xk+1 +
k − 1

k + 2
(xk+1 − xk)

for k = 0, 1, . . . , where x0 = y0 ∈ Rd, is Nesterov’s accelerated gradient
method (AGM).

Theorem
Assume the convex, L-smooth function f has a minimizer x⋆. Then
AGM converges with the rate

f(xk)− f(x⋆) ≤ 2L∥x0 − x⋆∥2

k2
, for k = 1, 2, . . . .
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Convergence analysis of AGM

Lemma
Equivalent form of AGM:

xk+1 = yk − 1

L
∇f(yk)

zk+1 = zk − k + 1

2L
∇f(yk)

yk+1 =

(
1− 2

k + 2

)
xk+1 +

2

k + 2
zk+1

for k = 0, 1, . . . , where x0 = y0 = z0 ∈ Rd.

Proof. Follows from induction.
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Preliminary observations. Define

θk =
k + 1

2

for k = −1, 0, 1, . . . . It is straightforward to verify

θ2k − θk ≤ θ2k−1 (1)

for k = 0, 1, . . . . We will use the inequalities

f(xk+1)− f(yk) +
1

2L
∥∇f(yk)∥2 ≤ 0 (2)

f(yk)− f(xk) ≤ ⟨∇f(yk), yk − xk⟩ (3)

f(yk)− f(x⋆) ≤ ⟨∇f(yk), yk − x⋆⟩. (4)

The first, (2), follows from L-smoothness, which implies
f(x)− L

2 ∥x− yk∥2 is concave as a function of x, which in turn implies

f(x)− L

2
∥x− yk∥2 ≤ f(yk) + ⟨∇f(yk), x− yk⟩.

We plug in x = xk+1 = yk − 1
L∇f(yk) to get (2). The second and third

inequalities, (3) and (4), follow from convexity of f .



Convergence analysis of AGM

Define

Ek = θ2k−1

(
f(xk)− f(x⋆)

)
+

L

2
∥zk − x⋆∥2.

If we establish Ek ≤ Ek−1 ≤ · · · ≤ E0, then Ek ≤ E0 implies

θ2k−1(f(x
k)− f(x⋆)) ≤ Ek ≤ E0 =

L

2
∥z0 − x⋆∥2.

Convex optimization 50



Ek+1 − Ek

= θ2k

(
f(xk+1)− f(x⋆) +

1

2L
∥∇f(yk)∥2

)
− θ2k−1(f(x

k)− f(x⋆))

− θk⟨∇f(yk), zk − x⋆⟩
(2)

≤ θ2k

(
f(yk)− f(x⋆)

)
− θ2k−1(f(x

k)− f(x⋆))− θk⟨∇f(yk), zk − x⋆⟩

= (θ2k − θk)(f(y
k)− f(xk)) + θk(f(y

k)− f(xk)) + (θ2k − θ2k−1)(f(x
k)− f(x⋆))

− θk⟨∇f(yk), zk − x⋆⟩
(1)

≤ (θ2k − θk)(f(y
k)− f(xk)) + θk(f(y

k)− f(x⋆))− θk⟨∇f(yk), zk − x⋆⟩
(3),(4)

≤ (θ2k − θk)⟨∇f(yk), yk − xk⟩+ θk⟨∇f(yk), yk − x⋆⟩ − θk⟨∇f(yk), zk − x⋆⟩

= θk⟨∇f(yk), (1− θk)x
k + θky

k − zk⟩ def. of zk

= 0,

where the first equality follows from

L

2

∥∥∥∥zk − x⋆ − θk
L
∇f(yk)

∥∥∥∥2

−L

2
∥zk−x⋆∥2 = −θk⟨∇f(yk), zk−x⋆⟩+ θ2k

2L
∥∇f(yk)∥2.



Accelerated proximal gradient (FISTA)

Consider the problem

minimize
x∈Rd

f(x) + g(x),

where f is differentiable convex and g is CCP. The method

xk+1 = prox 1
L g

(
yk − 1

L∇f(yk)
)

yk+1 = xk+1 +
k − 1

k + 2
(xk+1 − xk)

for k = 0, 1, . . . , where x0 = y0 ∈ Rd, is called the accelerated proximal
gradient method or fast iterative shrinkage-thresholding algorithm
(FISTA).
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Convergence analysis of FISTA

Theorem
Assume f is L-smooth convex and g is CCP. Assume f + g has a
minimizer x⋆. Then FISTA converges with the rate

f(xk) + g(xk)− f(x⋆)− g(x⋆) ≤ 2L∥x0 − x⋆∥2

k2
, for k = 1, 2, . . . .

Proof. Define θk = k+1
2 for k = −1, 0, 1, . . . . Let

Ek = θ2k−1

(
f(xk) + g(xk)− f(x⋆)− g(x⋆)

)
+

L

2
∥zk − x⋆∥2.

If we establish Ek ≤ Ek−1 ≤ · · · ≤ E0, then Ek ≤ E0 implies

θ2k−1(f(x
k)− f(x⋆)) ≤ Ek ≤ E0 =

L

2
∥x0 − x⋆∥2.
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Convergence analysis of FISTA

Lemma
Equivalent form of FISTA:

xk+1 = prox 1
L g

(
yk − 1

L∇f(yk)
)

zk+1 = zk + θk(x
k+1 − yk)

yk+1 =

(
1− 1

θk+1

)
xk+1 +

1

θk+1
zk+1

for k = 0, 1, . . . , where x0 = y0 = z0 ∈ Rd.

Proof. Follows from induction.
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Convergence analysis of FISTA

Preliminary observations. Define

θk =
k + 1

2

for k = −1, 0, 1, . . . . It is straightforward to verify

θ2k − θk ≤ θ2k−1 (1)

for k = 0, 1, . . . .

Let F = f + g. We will use the inequalities

F (xk+1)− F (x⋆) ≤ L⟨x⋆ − yk, xk+1 − yk⟩ − L

2
∥xk+1 − yk∥2 (2)

F (xk+1)− F (xk) ≤ L⟨xk − yk, xk+1 − yk⟩ − L

2
∥xk+1 − yk∥2 (3)

which follows from plugging in φ = x⋆ and φ = xk into the lemma we
proved for the analysis of prox-grad.
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Ek+1 − Ek

= θ2k(F (xk+1)− F (x⋆))− θ2k−1(F (xk)− F (x⋆)) +
L

2
∥zk+1 − x⋆∥2 − L

2
∥zk − x⋆∥2

•
= θ2k(F (xk+1)− F (x⋆))− θ2k−1(F (xk)− F (x⋆))

+ Lθk⟨xk+1 − yk, zk − x⋆⟩+ Lθ2k
2

∥xk+1 − yk∥2

(1)

≤ θ2k(F (xk+1)− F (x⋆))− θk(θk − 1)(F (xk)− F (x⋆))

+
Lθ2k
2

∥xk+1 − yk∥2 + Lθk⟨xk+1 − yk, zk − x⋆⟩

= (θ2k − θk)(F (xk+1)− F (xk)) + θk(F (xk+1)− F (x⋆)) +
L(θ2k − θk)

2
∥xk+1 − yk∥2

+
Lθk
2

∥xk+1 − yk∥2 + Lθk⟨xk+1 − yk, θky
k − (θk − 1)xk︸ ︷︷ ︸

def. of zk

−x⋆⟩



(3)

≤ Lθk(θk − 1)⟨xk − yk, xk+1 − yk⟩+ θk(F (xk+1)− F (x⋆))

+
Lθk
2

∥xk+1 − yk∥2 + Lθk⟨xk+1 − yk, θky
k − (θk − 1)xk − x⋆⟩

= θk(F (xk+1)− F (x⋆)) +
Lθk
2

∥xk+1 − yk∥2 + Lθk⟨xk+1 − yk, yk − x⋆⟩

(2)

≤ 0.

where (•) follows from

L

2

∥∥∥zk − x
⋆ − θk(x

k+1 − y
k
)
∥∥∥2

−
L

2
∥zk−x

⋆∥2
= Lθk⟨xk+1−y

k
, z

k−x
⋆⟩+

Lθ2
k

2
∥xk+1−y

k∥2
.



Strongly-convex AGM

Consider the problem

minimize
x∈Rd

f(x),

where f is µ-strongly convex and L-smooth. The method

xk+1 = yk − 1

L
∇f(yk)

yk+1 = xk+1 +

√
κ− 1√
κ+ 1

(xk+1 − xk)

for k = 0, 1, . . . , where x0 = y0 ∈ Rd, and κ = L/µ, is called the
strongly convex accelerated gradient method (SC-AGM).
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Theorem
Let 0 < µ < L < ∞. Let f : Rd → R be L-smooth and µ-strongly
convex. Then, SC-AGM converges with the rate

f(xk)− f(x⋆) ≤ µ+ L

2
∥x0 − x⋆∥2e−k/

√
κ, for k = 0, 1, . . . .

Proof. Let zk = (1 +
√
κ)yk −

√
κxk and

Ek =

(
1 +

1√
κ− 1

)k (
f(xk)− f(x⋆) +

µ

2
∥zk − x⋆∥2

)
for k = 0, 1, . . . . If we establish Ek ≤ · · · ≤ E0, then Ek ≤ E0 implies(

1 +
1√
κ− 1

)k

(f(xk)− f(x⋆)) ≤ Ek ≤ E0

= f(x0)− f(x⋆) +
µ

2
∥x0 − x⋆∥2 ≤ L

2
∥x0 − x⋆∥2 + µ

2
∥x0 − x⋆∥2.

We conclude the statement with(
1 +

1√
κ− 1

)−k

≤ exp
( −k√

κ− 1

)
≤ exp

(−k√
κ

)
.
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Stochastic optimization

Consider the stochastic optimization problem

minimize
x∈Rd

E
ω
[f(x;ω)] = F (x),

where ω is a random variable. In machine learning, such problems arise in
the finite-sum form

minimize
x∈Rd

E
I∼Uniform{1,...,N}

[fI(x)] =
1

N

N∑
i=1

fi(x),

or

minimize
θ∈Rd

1

N

N∑
i=1

ℓ(fθ(Xi), Yi).
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Stochastic (sub)gradients

Under mild conditions, we have

∇F (x) = ∇E
ω
[f(x;ω)] = E

ω
[∇xf(x;ω)].

Therefore, ∇xf(x;ω) is an unbiased estimate of ∇F (x), and we say
∇xf(x;ω) is a stocahstic gradient of F at x ∈ Rd.

Let gω ∈ ∂f(x;ω) be a random subgradient at x ∈ Rd. Then,

F (y) = E
ω
[f(y;ω)] ≥ E

ω
[f(x;ω) + ⟨gω, y − x⟩]

= F (x) + ⟨E
ω
[gω], y − x⟩, ∀ y ∈ Rd

and Eω[gω] ∈ ∂F (x), provided that Eω[gω] is well defined. In this case,
we say gω ∈ ∂f(x;ω) is a stocahstic subgradient of F at x ∈ Rd.
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Stochastic (sub)gradient descent (SGD)

Consider the algorithm stochastic (sub)gradient descent (SGD)

xk+1 = xk − αkg
k

for k = 0, 1, . . . , where gk is a stochastic (sub)gradient of F at xk.

More specifically, we assume that

Ek[g
k] ∈ ∂F (xk),

where
Ek[·] = E[· |x0, x1, . . . , xk]

is the conditional expectation, conditioned on the iterates up to xk. We
will also assume that the conditional variance is bounded:

Vark(g
k) = Ek

[
∥gk − Ek[g

k]∥2
]
≤ σ2
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Analysis of SGD

Theorem
Let F : Rd → R be a G-Lipschitz continuous convex function. Assume F
has a minimizer x⋆. Let x0 ∈ Rd be a starting point. Let K > 0 be the
total iteration count. Assume the stochastic subgradient gk satisfies

Ek[g
k] ∈ ∂F (xk), Vark(g

k) ≤ σ2

for k = 0, 1, . . . . Then, SGD with the constant stepsize

αk = α =
∥x0 − x⋆∥2√

G2 + σ2
√
K + 1

exhibits the rate

E
[
f(x̄K)− f(x⋆)

]
≤

√
G2 + σ2∥x0 − x⋆∥2√

K + 1
,

where

x̄K =
1

K + 1

K∑
k=0

xk.



Analysis of SGD

Proof. First,

Ek

[
∥xk+1 − x⋆∥22

]
= ∥xk − x⋆∥22 − 2α⟨Ek[g

k], xk − x⋆⟩+ α2Ek[∥gk∥2]
≤ ∥xk − x⋆∥22 − 2α(F (xk)− F (x⋆)) + α2(G2 + σ2).

We take the total expectation on both sides to get

E
[
∥xk+1 − x⋆∥22

]
≤ E

[
∥xk − x⋆∥22

]
− 2αE[F (xk)− F (x⋆)] + α2(G2 + σ2).

By the same telescoping-sum argument as in the (non-stochastic)
subgradient descent, we have

E[F (x̄K)− F (x⋆)] ≤ 1

K + 1

K∑
k=0

E[F (xk)− F (x⋆)] ≤
√
G2 + σ2R√
K + 1

.
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Projected stochastic gradient

Let C ⊆ Rd be a nonempty closed convex set. Consider the stochastic
optimization problem

minimize
x∈Rd

E
ω
[f(x;ω)] = F (x)

subject to x ∈ C,

where ω is a random variable.

Consider the algorithm projected stochastic (sub)gradient descent (SGD)

xk+1 = ProjC(x
k − αkg

k)

for k = 0, 1, . . . , where gk is a stochastic (sub)gradient of F at xk.
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Analysis of projected SGD

Theorem
Let F : Rd → R be a G-Lipschitz continuous convex function. Assume
x⋆ ∈ argminx∈C F (x) exists. Let x0 ∈ Rd be a starting point. Let
K > 0 be the total iteration count. Assume the stochastic subgradient
gk satisfies

Ek[g
k] ∈ ∂F (xk), Vark(g

k) ≤ σ2

for k = 0, 1, . . . . Then, projected SGD with the constant stepsize

αk = α =
∥x0 − x⋆∥2√

G2 + σ2
√
K + 1

exhibits the rate

E
[
F (x̄K)− F (x⋆)

]
≤

√
G2 + σ2∥x0 − x⋆∥2√

K + 1
,

where

x̄K =
1

K + 1

K∑
k=0

xk.



Analysis of projected SGD

Proof. By nonexpansivity of projection,

∥xk+1 − x⋆∥22 = ∥ProjC(xk − αgk)− ProjC(x
⋆)∥22

≤ ∥xk − αgk − x⋆∥22.

Now the analysis proceed the same as before

Ek

[
∥xk+1 − x⋆∥22

]
≤ Ek

[
∥xk − αgk − x⋆∥22

]
= ∥xk − x⋆∥22 − 2α⟨Ek[g

k], xk − x⋆⟩+ α2Ek[∥gk∥2]
≤ ∥xk − x⋆∥22 − 2α(F (xk)− F (x⋆)) + α2(G2 + σ2).
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Complexity lower bound

Later we will establish a complexity lower bound showing that

O
( 1√

K

)
is the correct (optimal rate). This rate will remain the same under the
assumption that F is L-smooth convex.

When F is strongly convex, a lower bound establishes that

O
( 1

K

)
is the correct (optimal rate). In the following, we will carry out a simple
but slightly suboptimal analysis to show a rate of order

O
( logK

K

)
.
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Strongly convex SGD

Consider the stochastic optimization problem

minimize
x∈Rd

E
ω
[f(x;ω)] +

µ

2
∥x∥2 = F (x) +

µ

2
∥x∥2

subject to x ∈ C,

where ω is a random variable. We assume F is Lipschitz continuous.
(F (x) + µ

2 ∥x∥
2 cannot be Lipschitz continuous.)

Consider the stochastic (sub)gradient descent (SGD)

xk+1 = xk − αk(g
k + µxk)

for k = 0, 1, . . . , where gk is a stochastic (sub)gradient of F at xk.
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Strongly convex SGD

Theorem
Let F : Rd → R be a G-Lipschitz continuous convex function. Let x⋆ be
the minimizer of F (x) + µ

2 ∥x∥
2. Let x0 ∈ Rd be the starting point.

Assume the stochastic subgradient gk satisfies

Ek[g
k] ∈ ∂F (xk), Vark(g

k) ≤ σ2

for k = 0, 1, . . . . Then, SGD with stepsize

αk =
1

µ(k + 1)

exhibits the rate

E
[
F (x̄k)− F (x⋆)

]
≤ 2(G2 + σ2)

µ

1 + log(k + 1)

k + 1
,

where

x̄k =
1

k + 1

k∑
s=0

xs.
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Proof. Let Ek[g
k] = Gk ∈ ∂F (xk). Since x0 = 0,

xk+1 = xk − αk(g
k + µxk)

= (1− αkµ)x
k + αkµ(− 1

µg
k)

=

k∑
s=0

θs(− 1
µg

s)

for some convex combination {θs}ks=0. (So θ0, . . . , θk ≥ 0 and
θ0 + · · ·+ θk = 1.) Using Jensen’s inequality on this convex combination,
we get

E[∥gk + µxk∥2] ≤ 2E[∥gk∥2] + 2µ2E[∥xk∥2]

≤ 2(∥Gk∥2 + σ2) + 2µ2
k∑

s=0

θsE
[∥∥− 1

µg
s
∥∥2]

≤ 2(G2 + σ2) + 2(G2 + σ2) = 4(G2 + σ2)

for k = 0, 1, . . . .
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Next,

Ek

[
∥xk+1 − x⋆∥22

]
= ∥xk − x⋆∥22 − 2αk⟨Ek[g

k] + µxk, xk − x⋆⟩+ α2
kEk[∥gk + µxk∥2]

≤ ∥xk − x⋆∥22 − 2αk(F (xk)− F (x⋆) +
µ

2
∥xk − x⋆∥2) + α2

k4(G
2 + σ2)

≤ (1− αkµ)∥xk − x⋆∥22 − 2αk(F (xk)− F (x⋆)) + α2
k4(G

2 + σ2)

for k = 0, 1, . . . . Rearranging the terms and plugging in αk = 1
µ(k+1) ,

F (xk)− F (x⋆) ≤ µk

2
∥xk − x⋆∥22 −

µ(k + 1)

2
Ek

[
∥xk+1 − x⋆∥22

]
+

2(G2 + σ2)

µ(k + 1)

With a telescoping sum argument, we have

k∑
s=0

F (xs)− F (x⋆) ≤ 2(G2 + σ2)

µ

k∑
s=0

1

s+ 1
≤ 2(G2 + σ2)

µ
(1 + log(k + 1)).

Finally, we conclude with Jensen’s inequality.
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