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Supervised learning setup

Given data X4,..., Xy € X and corresponding labels Y7,..., YNy € ),
where X is the data space ) is the label space. Goal is to learn a
function f: X — Y such that f(X) & Y for new data-label pairs (X,Y).

More formally, let £: Y x ) — R be a loss function that quantifies the

size of the error. Often, £(y’,y) > 0 for all ¢/, y € V. Assume

(X:,Y;) 'Y P. We further formalize the goal as

minimize E [((f(X),Y)].
f (X,Y)~P

For now, consider the minimization over all functions f, although we will
soon see that we must restrict the class of functions.

Precisely speaking the expectation is well defined only for appropriately measurable
functions £ and f. In this course, we will not seriously engage with the issue of
measurability, but | will point out the issue when relevant.
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Supervised learning setup

Sometimes, actually, we don't want the “prediction” of f to be exactly
the same type as the label Y € ).

Assume (X;,Y;) 2 P. More generally, let f: X — Y and

0:Y xY — R. We formalize the goal as

mi?ien}ize (X,;E)NPM(JC(X)’Y)] .

Example) K-class classification with cross-entropy loss, where
y={1,2,...,K} and
:)N):AK = {(plw"apK‘ph'"apK Zoap1++pK = 1}

l.e., label Y is a single class, but the prediction is a probability
distribution over the K classes. The cross-entropy loss is

exp(yy,)
Py, y) = —log (’“’) > 0.
iy exp(y;)
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Expected risk

The expected risk, also called the true risk, is

Rlfl= E [((f(X),Y)].
(X,Y)~P
Our goal is to solve
minimize R([f].
f
We call
R* = iIflfR[f]

the Bayes risk or the optimal risk, where the infimum is over all functions.
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Bayes predictor

Optimal f*: X — Y attaining the Bayes risk is characterized as follows.

By the law of iterated expectations, we have

Rlfl= E [(f(X)Y)]
(X,Y)~P
= E E [0(f(X),Y)]X]

 X~Px |Y~Pyix
Then, the Bayes predictor f*, defined by

fr(X) €argmin_ E [((y,Y) | X],
y/ej} YNPy‘X

attains the Bayes risk, i.e.,
R* = R[f"].

(So, the Bayes predictor is the exact/perfect solution to given ML task.)
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Theorem
Let f* be such that

ff(X)e€argmin E [(,Y)]X] VX e X.
yey Y~Prix

Then, RIf| > RIfYT Y/

(We do not know whether f* exists or whether it is unique.)

Proof. Since

YJEY‘XW(X)’Y) | X] > szgmw(f*(xw) |X] VXea,

by the law of iterated expectations, we have

RUI= B, |, B [C0.)]X]
> E | B FX)Y)|X]| =R
~Px ~Py | x




Example: Binary classification

Consider Y =Y = {—1,+1} and £(y/,y) = 1gy2yy. So
Rifl= E [(f(X),Y)]= P (f(X)#Y).
(X, Y)~P (X,Y)~P
Then,

. —1 fPY =-1]|X)>PY =+1|X)
f(X):{ +1 ifP(Y = +1]|X) <P(Y = -1 X)

(with ties broken arbitrarily) is a Bayes predictor, and

R*= E [min{P(Y = —1|X),P(Y = +1] X)}].

X~Px
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Example: Regression with squared loss

Consider Y =Y =R and £(y/,y) = (v — y)>. Then
ff(X)=argmin_ E [(y = Y)?| X]
y'€R  Y~Py|x

—argmin_ B [(y/ — E[Y | X])* + (E[Y | X] - Y)?
y'€R Y~Py|x

+2(y —EY [ XD(EN | X] - Y) [ X]

—argmin_ E [(y —E[Y | X])® + (E[Y| X] - V)?| X]
y’'€R  Y~Py | x

= E[Y | X].

Note that only the blue term depends on v/'.

So the conditional mean E[Y | X] is the optimal Bayes predictor, and
R*= E [Var(Y|X)]
X~Px

is the expected conditional variance of Y.
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Excess risk and empirical risk

Think of R* as the optimal (smallest) risk one could achieve, in principle,
with infinite data and compute.

Define excess risk as
R[.ﬂ - R*’
which is the risk f achieve compared to the baseline of R*.

In practice, we do not have access to the true risk. We instead have
access to the empirical risk

N
RIf] = ¢ 2 U (X))

However, .
minifmize RIf],

where the minimization is over all functions, is a bad idea as it leads to
severe overfitting.
Decision theory
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Function class (hypothesis set)

We write F to denote a function class (also called a hypothesis set) used
in an ML algorithm.

Fis a “small” subset of functions; it is not all functions.
» Considering all functions would be computationally expensive.

> Having a “large” function class F causes overfitting (large
estimation error, large Rademacher complexity), as we discuss soon.

F is often not a vector space.

» We often impose compactness, and F becomes a subset of a vector
space.

» In deep learning, neural networks depend on their parameters
nonlinearly, and F becomes a “manifold” within a larger function
(vector) space.

Decision theory
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Empirical risk minimization

Eempirical risk minimization considers

f € argmin ﬁ[f]
fer

or

f ~ argmin R[f].
fer

We use the notation X = argmin to say that X is an approximate
minimizer. The consequence of solving the minimization inexactly will be
addressed later when we discuss optimization error.
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Risk decomposition

Let f be the output of an ML algorithm. (Usually approximate empirical
risk minimization over a parameterized class of functions.)

Our analyses will be based on the risk decomposition:

RIf] =R* = (RIf] = jnf RIf') + (inf RIf]~R")

=Estimation error>0 =Approximation error>0

Approximation error only depends on F, P, and /; it does not depend on
the data or the choice of ML algorithm. If F is sufficiently expressive,
i.e., if F can approximate the optimal Bayes predictor f* well, then the
approximation error will be small.

Estimation error depends on f which, in turn, depends on the data
{(X;,Y;)}Y, and the ML algorithm.

=1
Decision theory
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Risk decomposition

Goal is to show excess risk is small, i.e.,

R[f] — R* < small,
by showing

Estimati = R[f|] — inf R[f] < smal
stimation error [f] At [f] < sma
and

Approximation error = finf}_R[f/] —R* < small.
‘e

Note, estimation error is random (because f is random), and
approximation error is deterministic.

To argue that the excess risk is “small”, we need to show that estimation
error is either small in expectation or small with high probability.
Decision theory 14



Bias-variance tradeoff

Goal is to show excess risk is small, i.e.,

R[f] — R* < small
by showing

Estimati =R[f] — inf R[f'] < small
stimation error [f] ot [f'] <sma

and

Approximation error = fing_R[f’] — R* < small.
‘e

Typically, estimation error goes down as N goes up, but it goes up as F
becomes large.

Typically, approximation error goes down to 0 as F becomes large.
(By universal approximation theorems.)

Decision theory
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Bias-variance tradeoff

In most cases, large N is better,! but large F is not always better, even
though processing large F requires more compute.

In traditional statistics and ML theory,2 the best F is the solution of the
bias-variance tradeoff, a trade-off between underfitting and overfitting.

Underfitting is loosely defined by the following conditions:
» high bias, low variance
» small estimation error, large approximation error
» small F

Overfitting is loosely defined by the following conditions:
» low bias, high variance
> large estimation error, small approximation error
> large F

IThere are some counterintuitive counterexamples to this:

P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and |. Sutskever, Deep double
descent: Where bigger models and more data hurt, /CLR, 2020.

2“Double-descent” and “benign overfitting” is the alternate modern view.



Universal approximation result

We will soon see why large F can increase estimation error.

However, typically, large F reduces approximation error
Approximation error = inf R[f'] — R*
frer

due to universal approximation theory.

In this course, we won't get to this topic, but such results have the
following flavor.
Theorem (Universal approximation theorem. Informal)

Let fy be an L-layer neural network with L > 2. If fy has sufficiently
many neurons, then fy can approximate any function in the sense of LP
for any p € [1, o0].

(It is possible to show a quantitative approximation result that describes
the number of neurons needed to achieve an £ > 0 approximation.)

Corollary: If F large, neural network fy can approximate optimal Bayes
predictor well, and approximation error = 0.
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Estimation error decomposition

Estimation error = R[f] — fi/rgrn[f/]
=R[f] - Rlg] (define g = argmin R[f'])
fler
= (RIf] = RIf]) + (Rlg] — Rlg]) + (R[f] — Rlg])
< sup{R[f] - RIfI} + ;gg{fem - RIf1} + (R[f] - Rlg))

}
< sup{R[f] — RIf]} + sup{R[f] — R[f]} + (R[f] — inf R[f])
feF feF feF

=Optimization errorx0

For now, assume opt. error is negligible. We'll bound opt. error later.

(This identity holds the same even if a minimizer g does not exist.)

Estimation error
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Uniform bound

Ignoring the optimization error, we are left to bound

sup{R[f] — R[f]} + sup{R[f] — R[f]}
feF feF

Sometimes, one proceeds with the

sup{R[f] — R[f]} + sup{R[f] — R[f]} < 2 sup | R[f] — R[f]
fEF feF feF

)

and bound the RHS with a uniform bound on |R[f] — R[f]|.

Estimation error 20



Why uniform convergence?

Loosely speaking, we will show

sup |R[f] = R[f]| =0,
fer

. ~ unif ..
i.e., show R ""S™ R, as N — oo. This is a standard argument.

This bound may seem pessimistic (loose), but it is crucial. Since
[ ~ argmin ;. » R[f], the statistical dependence between R and f is
usually intractable.

By passing to the uniform bound, we eliminate f and thereby remove the

statistical dependence between R and f We now only need to deal with
the randomness of R.

Estimation error 21



Expected error to PAC bound

Assume we can show

E [1§1612|R[f} ~ RIf]|] < small.

Then we can show a concentration result

sup [R[f] = R[f]| <e  with probability > 1.
feF

Using Markov, we can show

. E | sup ;¢ R[f]—f%[f]
sup [R[f] - RIf]| < [soprer | ”

sup 5 w.p. >1-9.

However, we can obtain a much stronger bound with McDiarmid.

Estimation error 22



PAC bound with McDiarmid

Assume 0 < A(f(X),Y) < /Ly forall f € Fand (X,Y)~ P.3
Assumption holds if:

» (-1 loss ®(_q is used; or

» Convex surrogate loss* is used, f € F is continuous, |F| < |infty,
|V| < 00, and X ~ P has compact support (e.g. images with pixel
values in [0, 1]).

Let Z; = (X;,Y;) fori=1,..., N, and let

H(Z,.. 2x) = sup {RIf) - RIfI}

and use the McDiarmid inequality to obtain a PAC bound.

350 0 < A(f(X),Y) < Lo for all f € F, P-almost surely.
4Convex functions are continuous.
Estimation error
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PAC bound with McDiarmid
The bounded differences property

|H(Z1, .. Zi, Zis Ziga, - ZN)—H(Z0, ..., Zic1, Z), Zigrs - ZN)| S ¢

=D

is the main condition to be checked.

To see this, note that

RIF(D) ~ RIFD) = 1 (F(X0), YY)~ K7 (X0), VD) <
Then we have
H(D) - H(D')
= sup {RIf] - RII(D') + RIID) ~ RIAD)} - sup (RIS~ RIfD)}
< sup {R[f] = R[f|(D")} + sup {R D) = RIAD)} - sup {RIf] = RIAID)}

= ;gg{ﬂ[ﬁ(ﬁ) - R[fI(D)} <!t ~

So ¢ = %C and |[H(D) — H(D")| < Wx with a symmetric argument.



PAC bound with McDiarmid

Therefore, we conclude

sup {RIf] < RIf1} < E[sup {Rf] - RIA}] + ooy 2L
fer feF

2N

with probability 1 — 4.
By the same reasoning, we have

sup {R[f] — R[f]} <E[sup {R[f] - R[f]}] + fw 108‘2(]1\]/5)
fer fer

with probability 1 — 4.

By a union bound, we have
sup {R[f] = RIf]} + sup {R[f] - RI/]}
fer fer

< E[sup {R[f] — RIf]}] +E[sup {R[f] - R[f]}] + ls N
fer fer

with probability 1 — 4.

Estimation error

2log(2/96)
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Example: Finite number of models

We show examples of bounding the estimation error.

Consider |F| = m < oo, i.e., we are learning among a finite number of
models. Let {f1,..., fm} = F and

f= argmin R[fi].
fros fm€F

Assume 0 < £(f(X),Y) <l for all f € F and (X,Y) ~ P. Since

RIf] - Zf E[((f(X),Y)],

zero-mean sub-Gauss. with 72 = 52

R[f] — R[f] is a zero-mean sub-Gaussian with 72 = ¢2_/N.

Then,
E[sup{R[f]—ﬁ[f]}] SE[ max {sz [fz]}}

fer =1,...,m

I 202
Estimation error < \/m. 2



Example: Finite number of models

Combining this with McDiarmid inequality,

. 202, /log(1/4)
?EE{R[‘H —R[f]} < N (Vlogm—?— 4>

with probability 1 — 4. The same bound on sup . » {ﬁ[f] — R[f]} can
be obtained with the same argument.

Finally, we have
Estimati =R[f] — inf R[f
stimation error [f] ot £

< sup {RIf] - 7@[]"]} + sup {ﬁ[f] — RI[f]} + Opt. error
feF —

<% (v + 2220

with probability 1 — 4.

Estimation error 27




g-cover

We say (F, | - |loo) is totally bounded if for any & > 0, there is m(e) < oo
and f1,..., fm(e) € F such that

m(e)

FC U B(fi.e),

=1
where B(fi,e) = {f € F||[f = fillo <e}.

We say fi,..., fm(e) is an e-cover of size m(e).

(As an aside, in complete metric spaces, a set is compact if and only if it
is closed and totally bounded.)

Estimation error
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Example: Infinite models with covering number

Assume £(-,Y) is G-Lipschitz for all Y ~ Py
Assume 0 < £(f(X),Y) <l forall f € Fand (X,Y) ~ P.

Then, with || f — fill <e,

RIf] = RIf] < [RIf] = RIA| + RIf] = RIf] + [RIf:] — RIS
<2Ge+  max {RIf:] - RIfi]}

,,,,, m(e)

Therefore,

E |sup {R[f] — R[f]}

fer

i=1,..., m

< 2Ge + %lom()
< 2Ge + [ = logm(e).

<2Ge+E [ max © {RIfi] - 7Az[fz]}]

Estimation error



Example: Infinite models with covering number

For the sake of specificity®, assume m(e) ~ e~¢. Choose £ ~ 1/v/N.

Chaining things together, we get

Estimati =R[f] — inf R[f'
stimation error = R[] ot £

4G 82,
S—+y ==
VN N

with probability 1 — 4.

<\/d log(N) + \/log(2/(5)> + Opt. error

In many cases, the analysis is suboptimal. Rademacher complexity leads
to sharper bounds.

5A compact set in R? has m(e) ~ (vVd/e)?. Generally, when logm(g) ~ dlog(e) with
logarithmic factors in d ignored, d is loosely considered to be the underlying
“dimension” of F.
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Rademacher complexity
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Rademacher complexity

Let H be a class of R-valued functions on Z.
Let P be a probability distribution on Z.

The Rademacher complexity of H is

Rady(H) = E sup NZsl Z) 1|,
Zi,. Znp [ hEH
51,...,5N15Rad
where €1, ...,en are Rademacher random variables, which are £1 w.p.
1/2, and Z3,...,ZN and €1, ...,en are independent.

To clarify, Ry (#) does depend on the distribution P, but we suppress
the dependency on P for the sake of notational simplicity.

In general, Ry () may not be well defined if supj, 4, leads to a non-measurable
function. However, as far as | know, all practically parameterized function classes used
in ML do not have this problem. (Countable supremum of measurable functions is
measurable, and we can usually choose a countable dense subset of the parameters.)



Symmetrization technique
In the supervised learning setup, let Z = (X,Y) and

WMZ) = £(f(X),Y),  H={(f(x)y)|feF}

So
R 1 Y
Esup {RIf = RIS} = Esup { £ [H2)) - > nz)}
Theorem N
Esw { B [M2)] - ;mz»} < 2Rady (H)
and
Esgg{ Zh - E (Z)]} < 2Rady (H).

Proof. We use the symmetrization technique, which introduces
Zi,...,2Z\ ~ P as independent copies of Z1,...,Zn ~ P to write

N
E [h(Z)] = [NZ

Z~P z!,.. ,z ~P




1 N
BUCIEa ; h(zn}]

Z1,o ZN~P

=
—

=

L ome

e
—N

N
2 =

1
1N N 7
= E sup E — hZH\ Z1,...,.Z - — h(Z;
ZisnZN~P _heH{Z{,W,Z;\,NP [NZZ_‘; (Z) |21 a ; ( l)}
_ L L ;
= E sup E — hZz)) — = hZ) | Z1,...,Z
Z1,nZN~P _heﬂ{zg,...,zngs [N; () N; (2|21 o }
_ L LN i}
< E sup 4 — S h(Z) - —S hz ‘Z, Z
o B g e R = S0 |
= 5w LS w@ -na
Zy,nZn~P |l hen | N o ¢ ¢
Z{,...,Zy~P -
(*) 1
: E sup ¢ — ei(h h(Z,
le,ZNNP[hEH{N; #(h(2)) — h( ))}
ZY .., Zy~P -
€1,--EN
1N
< E sup — &4 Z su — —ei)h(Z;
T Z1,..,ZN~P |:h6’)g Z ! )+ p N;( 62) ( Z)
Z{,...,Zy~P
E1,.-EN
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Symmetrization technique

z;,... ZN~P hen N her N

€1, €1,-EN

= , E [supZaz

— eih(Z;)
TP 9 St

heH

=2 IE |:sup —Zslh(Z)

= 2Rady (H).

The other bound

. @NNPH ZhZ)—sup E [h(Z )]}

""" =1

< 2Radpn (H).

follows from the same reasoning.




We clarify the step

=1

) 1 o

- E sup ¢ — ei(h(Z;
Z1yeesZN~P LGE {N z_; (h(
Z} oDy ~P ¢

€1,y..3EN
Since Z1,...,ZNn, 21, ..., Z} are lID,
h(Z1) — h(Zy) h(Zy) — h(Z1)

h(Z!

WZy) — h(Zy)

foranyi=1,..., V.

Symmetrization technique

- hz) | 2| iz - hz




Symmetrization technique

For any (non-random) ey,...,enx € {—1,+1}, we have

h(Z}) — h(Zy) e1(h(Z}) — h(Z1))
h(Z}) . Wz) | 2| eh(Z) _ h(Z1))

WZi) —h(Zx)|  |en(h(Z) — h(Zy)

Therefore, for any (non-random) e1,...,ex € {—1,+1}, we have
1 D 1
sup < — hZz!) —h(Z; =sup{ — Y &(h(Z)—h(Z;
o {3 200 -ty b 2 {30z - iz

Taking the expectation with respect to Z, Z’, and ¢ justifies (;)



Contraction principle

Theorem
Let ay,...,an and b be functions from © to R (no assumption). Let

©1,...,N be 1-Lipschitz functions from R to R. Let eq,...,en be IID
Rademacher random variables. Then,

N N
sup{b(@)—FZEi%(ai(G))}]S E [sup{b(e)Jrzgiai(e)}]

e |
€1,-,EN LOcO i1 €1,--,EN LHcO

Proof. Use induction. Statement holds trivially with N = 0.

Now assume statement holds for N — 1.
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IE [sup {b 9) + Zeﬁaz al(ﬁ))}]

Elyeen co ~

1
551,4.%_1[;2@{”( +Z€M(az )+ en(an(6))}]

1 /
+ 3 51,-.-1755N,1 [gsllé% {b )+ ; eipi(a;(0") —on(an (0 ))}]
B b(6) +5(8') | N~ wi(ai(0) +pi(ai(0) | enlan(8) — on(an(8))
;,..,],EEN,I[QYSJ}E@ 2 + 2= 2 + 2 }]
Qg [ b(O) +5(0) | N _ iai(®) +ei(ai(®) | len(an(9)) —m(aww'm}]
€14ueey en—1lgo’co 2 = ‘ 2 2
b(0) +b(0) | "= @i@i(9) +¢i(ai() | lan(0) — an(0")]
S Bl ot X 2 i 2 )]
) b(0) +b(0) | N~ @i(ai(0) +pi(ai(8) | an(8) —an(6)
B e D I )

1 N-1
2 51,‘_‘IEN 1[225 {b(6) + Z_: eipi(ai(0)) + aN(G)}]

N-1

+ % E [ sup {b(@’) 4 Z Ei@i(ai(e/)) _ aN(G’)}]

€1ye0ey EN—-1L9/'cO =



© follows from considering the max over (6,0") and (9’,0).

N1
E [sup {b(0) + Z eipi(ai(9)) + aN(a)}]

1
2e1,henv_1loeco

_|_% E [ sup {b(#’) + Z ipi(ai(0)) —an (6 )}]

0'cO

sup {b(0) +enan () + Y Ei%(ai(e))}] ‘EN}
i=1

E1yees EN— 1[066

< E |:61,”‘17EEN1[31€1}(; {b(0) + enan(0) + A‘ngiai(e)}] EN:|

:51 . [sup{b 9)—}—251111 ]

.....

where the final inequality holds by the induction hypothesis. O
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Contraction principle: Corollary

Corollary

Let £(-,Y) be G-Lipschitz for all Y ~ Py. Letey,...,en be lID
Rademacher random variables. Then,

sup — Z el

€1,.. ,EN {fe]-'

) (X3, Yoy

€1,--3EN

Taking expectation with respect to {(X;,Y:)}X,, we conclude

Rady(H) < G- Radn (F).

To be pedantic, we should write
Rady(#H; Px,y) < G -Radn(F; Px),

Since the LHS depends on the joint distribution Px y while the RHS
depends only on the marginal distribution Px.



Outline
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Example: Ball constrained linear prediction
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Ball constrained linear prediction
Let

F = {folx) =07z [ 6] < D, 0 € R*},
where || - || is some norm. Then,

1
Rady(F)= E [ sup —2519 X] N E l sup ETX9‘|
iid [ 17 |

X150, XN~ Px ‘9”<D [0|I<D

D D
=— E sup 0T(XTe)| = E XTe|l4],
N x,,. Xy | o)<t (XTe) N 1,...,XN[|| I-]
E€1,..EN €1;--,EN
where || - ||« denotes the dual norm and
€1 X{
e=|:|eRY, X=|:|eRV
EN X]1\-/

Example: Ball constrained linear prediction 43



Euclidean norm case

Assume || X ||z < Rforall X ~ Px. When ||| = ||l ="

2

RadN(]:)

D
SE[XTels] < B[]

E[Tr(sTXXTe)] :% E[Tr(XXTeeT)] :% E[Tr(XXT1)]

D
N
_D
N

DR
<=

\/N?

where we used Jensen's inequality and the trace trick.
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{1-f-.-norm case

Assume || X ||oo < R for all X ~ Px. When ||-|| = -1 and

-l = 1 Nloos

D
Rady (F) = L E[IX7e]l]

D N
- Dol e S0

DR
< ——+/2log(2d),
<N g(2d)

since (X;);e; € [-R, R] is a sub-Gaussian with 7 = R, and the sum of N
such sub-Gaussians is a sub-Gaussian with 7 = v/NR.

Example: Ball constrained linear prediction
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Estimation error

Let || - || be the Euclidean norm. Assume || X|| < R for all X ~ Px.
Assume ¢(-,Y") is G-Lipschitz for all Y ~ Py-. Then,

E[R[f;]] — inf R[fs] < Esup{R[f] — R[f]} + Esup{R[f] — R[]}

le<b feF feF
E(R[f] — inf R
PRI - ot L)
=Opt. error

< 4Radpn(H) + Opt. error
< 4GRady (F) + Opt. error
< 4DGR
- VN
The first ineq. is by the estimation error decomposition, the second by
the symmetrization technique, and the third by the contraction principle.

+ Opt. error.

Example: Ball constrained linear prediction
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