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Stochastic optimization Consider the stochastic optimization problem

minimize E[f(z;w)] = F(x),
zER w

where w is a random variable. In machine learning, such problems arise in the
finite-sum form

N
minimize E z)] = — 2 (2),
zER I~Uniform{1,... N}[fl( )] N Zf( )
or

N
1
inimize — » ((fo(X:),Y;).
minimize N;:l (fo(Xi),Y5)

Stochastic (sub)gradients Under mild conditions, we have
VF(z) = VE[f(r:0)] = EIVa f(z:)].

Therefore, V, f(x;w) is an unbiased estimate of VF(x), and we say V. f(z;w)
is a stocahstic gradient of F at x € R,

Let g, € f(x;w) be a random subgradient at 2 € R?. Then,

F(y) =Elf(y;w)] 2 E[f (z;0) + {gu,y — )]

w

=F(z) + (Elgn),y —x), VyeR?

w

and R, [g.] € OF (x), provided that Ey[g,] is well defined. In this case, we say
gw € Of (z;w) is a stocahstic subgradient of F at x € RY.



Stochastic (sub)gradient descent (SGD) Consider the algorithm stochas-
tic (sub)gradient descent (SGD)

Tk41 = Tk — Ok Gk

for k =0,1,..., where g is a stochastic (sub)gradient of F' at x.

More specifically, we assume that
]Ek[gk] S 6F(.€L’k)7

where
Ex[] = E[- |20, 21, ..., T%]

is the conditional expectation, conditioned on the iterates up to zp. We will
also assume that the conditional variance is bounded:

Varg(gr) = Ex[[lgr — Ex[gx][?] < 0

Analysis of SGD

Theorem 1. Let F: R? — R be a G-Lipschitz continuous convex function.
Assume F has a minimizer x,. Let xo € R? be a starting point. Let K > 0 be
the total iteration count. Assume the stochastic subgradient gy satisfies

Ek[gk] S aF(l'k), Vark(gk) < 0'2
for k=0,1,.... Then, SGD with the constant stepsize

7o — 4|2

VG? + 02K +1

A = O =

exhibits the rate

< VG? 4+ 02|z — x4 ||2

)

K+1
where X«
= T
K+1 =
Proof. First,
Er[lorsr — @3] = loe — 3 — 20(Bxlgr], 21 — 2.) + o”Ex[l|ge||*]

< low — 13 = 20(F(w) = F(24)) + o®(G? + 0?).
We take the total expectation on both sides to get

Elllzksr — 23] < Efller — 2.ll3] — 20E[F(2r) — F(2.)] + 0*(G* + 0®).



By the same telescoping-sum argument as in the (non-stochastic) subgradient
descent, we have

1

E[F(z") = Fe)] < 7 S E[F(xr) - F(a.)] < V& + PR
k=0

K+1

O

Let Fo € F; C -+ be a sequence of o-algebras. Write E[X | F] for the
conditional expectation of a random variable X with respect to Fj. In the
context of this chapter, Fj represents the information before iteration k, and
the quantity Vi is Fp-measurable. Therefore, E [V | Fx] = Vi. To say this
without using measure theoretic language, E [- | F;] represents the expectation
conditioned on the information before iteration k, and Vj, is determined by the
randomness of the iterations before k. For example, the Lyapunov function
Vi = ||lzr — x4||?. Since zj is determined by the starting point o and the
stochastic gradients go,...,gx—1, we have E[Vj | Fix] = Vi, since there is no
randomness in Vj once we condition on the information before iteration k.

Theorem 2. Supermartingale convergence theorem. Let Vi and Si be Fi-

measurable random variables satisfying Vi, > 0 and Sy > 0 almost surely for
k=0,1,.... Assume
E Vg1 | Fil < Vi — Sk

holds for k=0,1,.... Then
1. Vi = Ve
2.3 0 oSk <00
almost surely. (Note that the limit Vo is a random variable.)

We do not use the supermartingale convergence theorem itself, but we state
it here for reference. The proof can be found in many standard textbooks
on probability theory. (The standard supermartingale convergence theorem is
slightly more general.)

Theorem 3 (Quasi-Martingale convergence theorem). Let Vi, Sk, and Uy be
Fr-measurable random variables satisfying Vi, > 0, S > 0, and Uy, > 0 almost
surely for k=0,1,.... Assume

E [Vis1 | Fx] < Vi — Sk + Uy
and -
Z U, < o0
i=1
almost surely. Then

1. Vi, = Vo



2. leio Sk < o
almost surely. (Note that the limit Vo is a random variable.)

This “almost supermartingale” convergence theorem is due to Robbins and
Siegmund 1985.

Proof. Define

k—1
Vi=Vi—>» U,
j=0
Then R ~
E[Vis1 | Fr] < Vi — Sk
So we can apply the supermartingale convergence theorem. O

Theorem 4. Let f: R™ — R be convex and G-Lipschitz. Let ay, be a sequence
of positive scalars such that

dap=00, Y aj<oo
k k
Then

gr. € Of (wr,)
Th4+1 = Tk — OpJk

converges in the sense of xy, — Too € argmin f almost surely.
Proof. Let Ei[-] = E[-|zo,...,2zx]. Then,

Ei [llze1 — Z[13] = ok — 25 — 20 (Brlgr], 26 — &) + aZEx]|gx]|”]
< ok = &3 — 20k (F(x) — F(22)) + ai (G + 0®).
Now we apply the quasi-Martingale convergence theorem to conclude that
lxx — Z4|| — limit

converges to a limit almost surely. By Proposition 1, we can conclude ||z) —
Zy|| — limit for all (uncountably many) x, € argmin f. The quasi-Martingale
convergence theorem also allows us to conclude that

iak(F(xk) —F,) <o
k=0

almost surely, so
liminf F(z) — F, =0

k—oco

almost surely.



Now choose a subsequence such that F(zy;) — Fi and by passing to a
further subsequence, we can have xy, — . Then, by continuity of F', we have
that z., € argmin F.

Since ||z — || — limit, this holds for all =, € argmin f, including z, = z,
we conclude that ||z — 2o || — 0 almost surely, i.e., z converges to a minimizer
almost surely. O

The necessity of Proposition 1 is subtle. Since we choose z, € argmin f
first and then apply the supermartingale convergence theorem, the conclusion
that limy_,o0 ||Tx — 2| exists with probability 1 applies to one fixed point z,
at a time. Without a formal argument, this does not immediately imply that
limg o0 ||zx — 24| for all x, € argmin f with probability 1 in the case where
Fix argmin f is not a singleton and therefore has uncountably many minimizers.

Proposition 1. Let Y C R” and let xg,x1,... be a random sequence. Then
statement 1 implies statement 2.

1. For ally € Y [with probability 1, limy_ o |2k — y|| exists].
2. With probability 1 [for all y € Y, limy_,00 || — yl| exists].

Proof of Proposition 1. This proof uses the separability of R™, that is, R™ con-
tains a countable, dense subset.

In particular, Y C R™ has a countable, dense subset {y!,4%,...}. By state-
ment 1, given i € {1,2,...}, there is a probability 1 event (y’) such that
limg o0 ||7k(w) — y¥|| for all w € Q(y*). Therefore limy o |21 (w) — || exists
for all i € {1,2,...} for w € Ni—12. Q(y"), and Ni—12. Q(y?) is an event with
probability 1 since it is a countable intersection of probability 1 events.

(In other words: with probability 1 [for all i = 1,2,..., limg_e0 ||zr — ¥*||
exists]. The subtlety is that an uncountable intersection of probability 1 events
may not have probability 1.)

Now pick any y € Y. Statement 2 is proved if we can show ||zx(w) — y|| con-
verges for w € N;j—1.2,. Q(y?). To this end, pick any & > 0. Since {y',y?,...} C
Y is dense, there exists y* € Y such that ||y* — y|| < e. We get the following
lower and upper bounds with the triangle inequality:

lzk(w) = yll < lox(w) =yl + 1y = yll < lonw) =yl +e,
k(@) =yl = [len(w) =yl = ly" =yl = [lze(w) — o'l — &
Since w € Q C Q(y"),
limsup [|ax(w) =yl < lim [|lzp(w) = '] + ¢,
k—o0 k—o0
liminf ||z (w) — y|| > lim |lzp(w) — ¥| — ¢,
k k—o0
and together we have

0 < limsup |zk(w) — y|| — limkinf lzg(w) —y|| < 2e.
k



As € > 0 is arbitrary, we conclude

limsup ||z (w) — yl| = im inf ||z (w) —y|| = lim [z (w) =y
k—00 k—o0 k—o0

O

In mathematical terms, the key idea of Proposition 1 is that (i) Y has a
countable dense subset, (ii) the sequence of functions {||zy — ‘|| }ren has a limit
on the countable dense subset of Y, and (iii) if an equicontinuous sequence of
functions has a limit on the dense subset of a metric space, then the limit exists
on the entire metric space.



