
Math 273A Notes:

Chapter 2

Ernest K. Ryu

November 12, 2025

Stochastic optimization Consider the stochastic optimization problem

minimize
x∈Rd

E
ω
[f(x;ω)] = F (x),

where ω is a random variable. In machine learning, such problems arise in the
finite-sum form

minimize
x∈Rd

E
I∼Uniform{1,...,N}

[fI(x)] =
1

N

N∑
i=1

fi(x),

or

minimize
θ∈Rd

1

N

N∑
i=1

ℓ(fθ(Xi), Yi).

Stochastic (sub)gradients Under mild conditions, we have

∇F (x) = ∇E
ω
[f(x;ω)] = E

ω
[∇xf(x;ω)].

Therefore, ∇xf(x;ω) is an unbiased estimate of ∇F (x), and we say ∇xf(x;ω)
is a stocahstic gradient of F at x ∈ Rd.

Let gω ∈ ∂f(x;ω) be a random subgradient at x ∈ Rd. Then,

F (y) = E
ω
[f(y;ω)] ≥ E

ω
[f(x;ω) + ⟨gω, y − x⟩]

= F (x) + ⟨E
ω
[gω], y − x⟩, ∀ y ∈ Rd

and Eω[gω] ∈ ∂F (x), provided that Eω[gω] is well defined. In this case, we say
gω ∈ ∂f(x;ω) is a stocahstic subgradient of F at x ∈ Rd.
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Stochastic (sub)gradient descent (SGD) Consider the algorithm stochas-
tic (sub)gradient descent (SGD)

xk+1 = xk − αkgk

for k = 0, 1, . . . , where gk is a stochastic (sub)gradient of F at xk.

More specifically, we assume that

Ek[gk] ∈ ∂F (xk),

where
Ek[·] = E[· |x0, x1, . . . , xk]

is the conditional expectation, conditioned on the iterates up to xk. We will
also assume that the conditional variance is bounded:

Vark(gk) = Ek

[
∥gk − Ek[gk]∥2

]
≤ σ2

Analysis of SGD

Theorem 1. Let F : Rd → R be a G-Lipschitz continuous convex function.
Assume F has a minimizer x⋆. Let x0 ∈ Rd be a starting point. Let K > 0 be
the total iteration count. Assume the stochastic subgradient gk satisfies

Ek[gk] ∈ ∂F (xk), Vark(gk) ≤ σ2

for k = 0, 1, . . . . Then, SGD with the constant stepsize

αk = α =
∥x0 − x⋆∥2√

G2 + σ2
√
K + 1

exhibits the rate

E
[
f(x̄K)− f(x⋆)

]
≤

√
G2 + σ2∥x0 − x⋆∥2√

K + 1
,

where

x̄K =
1

K + 1

K∑
k=0

xk.

Proof. First,

Ek

[
∥xk+1 − x⋆∥22

]
= ∥xk − x⋆∥22 − 2α⟨Ek[gk], xk − x⋆⟩+ α2Ek[∥gk∥2]
≤ ∥xk − x⋆∥22 − 2α(F (xk)− F (x⋆)) + α2(G2 + σ2).

We take the total expectation on both sides to get

E
[
∥xk+1 − x⋆∥22

]
≤ E

[
∥xk − x⋆∥22

]
− 2αE[F (xk)− F (x⋆)] + α2(G2 + σ2).
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By the same telescoping-sum argument as in the (non-stochastic) subgradient
descent, we have

E[F (x̄K)− F (x⋆)] ≤
1

K + 1

K∑
k=0

E[F (xk)− F (x⋆)] ≤
√
G2 + σ2R√
K + 1

.

Let F0 ⊆ F1 ⊆ · · · be a sequence of σ-algebras. Write E [X | Fk] for the
conditional expectation of a random variable X with respect to Fk. In the
context of this chapter, Fk represents the information before iteration k, and
the quantity Vk is Fk-measurable. Therefore, E [Vk | Fk] = Vk. To say this
without using measure theoretic language, E [· | Fk] represents the expectation
conditioned on the information before iteration k, and Vk is determined by the
randomness of the iterations before k. For example, the Lyapunov function
Vk = ∥xk − x⋆∥2. Since xk is determined by the starting point x0 and the
stochastic gradients g0, . . . , gk−1, we have E [Vk | Fk] = Vk, since there is no
randomness in Vk once we condition on the information before iteration k.

Theorem 2. Supermartingale convergence theorem. Let Vk and Sk be Fk-
measurable random variables satisfying Vk ≥ 0 and Sk ≥ 0 almost surely for
k = 0, 1, . . . . Assume

E [Vk+1 | Fk] ≤ Vk − Sk

holds for k = 0, 1, . . . . Then

1. Vk → V∞

2.
∑∞

k=0 Sk < ∞

almost surely. (Note that the limit V∞ is a random variable.)

We do not use the supermartingale convergence theorem itself, but we state
it here for reference. The proof can be found in many standard textbooks
on probability theory. (The standard supermartingale convergence theorem is
slightly more general.)

Theorem 3 (Quasi-Martingale convergence theorem). Let Vk, Sk, and Uk be
Fk-measurable random variables satisfying Vk ≥ 0, Sk ≥ 0, and Uk ≥ 0 almost
surely for k = 0, 1, . . . . Assume

E [Vk+1 | Fk] ≤ Vk − Sk + Uk

and
∞∑
i=1

Ui < ∞

almost surely. Then

1. Vk → V∞
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2.
∑∞

k=0 Sk < ∞

almost surely. (Note that the limit V∞ is a random variable.)

This “almost supermartingale” convergence theorem is due to Robbins and
Siegmund 1985.

Proof. Define

Ṽk = Vk −
k−1∑
j=0

Uj .

Then
E[Ṽk+1 | Fk] ≤ Ṽk − Sk

So we can apply the supermartingale convergence theorem.

Theorem 4. Let f : Rn → R be convex and G-Lipschitz. Let αk be a sequence
of positive scalars such that∑

k

αk = ∞,
∑
k

α2
k < ∞

Then

gk ∈ ∂f(xk)

xk+1 = xk − αkgk

converges in the sense of xk → x∞ ∈ argmin f almost surely.

Proof. Let Ek[·] = E[· |x0, . . . , xk]. Then,

Ek

[
∥xk+1 − x̃⋆∥22

]
= ∥xk − x̃⋆∥22 − 2αk⟨Ek[gk], xk − x̃⋆⟩+ α2

kEk[∥gk∥2]
≤ ∥xk − x̃⋆∥22 − 2αk(F (xk)− F (x̃⋆)) + α2

k(G
2 + σ2).

Now we apply the quasi-Martingale convergence theorem to conclude that

∥xk − x̃⋆∥ → limit

converges to a limit almost surely. By Proposition 1, we can conclude ∥xk −
x⋆∥ → limit for all (uncountably many) x⋆ ∈ argmin f . The quasi-Martingale
convergence theorem also allows us to conclude that

∞∑
k=0

αk(F (xk)− F⋆) < ∞

almost surely, so
lim inf
k→∞

F (xk)− F⋆ = 0

almost surely.
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Now choose a subsequence such that F (xkj ) → F⋆ and by passing to a
further subsequence, we can have xkj → x∞. Then, by continuity of F , we have
that x∞ ∈ argminF .

Since ∥xk−x⋆∥ → limit, this holds for all x⋆ ∈ argmin f , including x⋆ = x∞,
we conclude that ∥xk−x∞∥ → 0 almost surely, i.e., xk converges to a minimizer
almost surely.

The necessity of Proposition 1 is subtle. Since we choose x⋆ ∈ argmin f
first and then apply the supermartingale convergence theorem, the conclusion
that limk→∞ ∥xk − x⋆∥ exists with probability 1 applies to one fixed point x⋆

at a time. Without a formal argument, this does not immediately imply that
limk→∞ ∥xk − x⋆∥ for all x⋆ ∈ argmin f with probability 1 in the case where
Fix argmin f is not a singleton and therefore has uncountably many minimizers.

Proposition 1. Let Y ⊆ Rn and let x0, x1, . . . be a random sequence. Then
statement 1 implies statement 2.

1. For all y ∈ Y [with probability 1, limk→∞ ∥xk − y∥ exists].

2. With probability 1 [for all y ∈ Y , limk→∞ ∥xk − y∥ exists].

Proof of Proposition 1. This proof uses the separability of Rn, that is, Rn con-
tains a countable, dense subset.

In particular, Y ⊆ Rn has a countable, dense subset {y1, y2, . . . }. By state-
ment 1, given i ∈ {1, 2, . . . }, there is a probability 1 event Ω(yi) such that
limk→∞ ∥xk(ω) − yi∥ for all ω ∈ Ω(yi). Therefore limk→∞ ∥xk(ω) − yi∥ exists
for all i ∈ {1, 2, . . . } for ω ∈ ∩i=1,2,...Ω(y

i), and ∩i=1,2,...Ω(y
i) is an event with

probability 1 since it is a countable intersection of probability 1 events.
(In other words: with probability 1 [for all i = 1, 2, . . . , limk→∞ ∥xk − yi∥

exists]. The subtlety is that an uncountable intersection of probability 1 events
may not have probability 1.)

Now pick any y ∈ Y . Statement 2 is proved if we can show ∥xk(ω)− y∥ con-
verges for ω ∈ ∩i=1,2,...Ω(y

i). To this end, pick any ε > 0. Since {y1, y2, . . . } ⊆
Y is dense, there exists yi ∈ Y such that ∥yi − y∥ ≤ ε. We get the following
lower and upper bounds with the triangle inequality:

∥xk(ω)− y∥ ≤ ∥xk(ω)− yi∥+ ∥yi − y∥ ≤ ∥xk(ω)− yi∥+ ε,

∥xk(ω)− y∥ ≥ ∥xk(ω)− yi∥ − ∥yi − y∥ ≥ ∥xk(ω)− yi∥ − ε.

Since ω ∈ Ω ⊂ Ω(yi),

lim sup
k→∞

∥xk(ω)− y∥ ≤ lim
k→∞

∥xk(ω)− yi∥+ ε,

lim inf
k

∥xk(ω)− y∥ ≥ lim
k→∞

∥xk(ω)− yi∥ − ε,

and together we have

0 ≤ lim sup
k

∥xk(ω)− y∥ − lim inf
k

∥xk(ω)− y∥ ≤ 2ε.
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As ε > 0 is arbitrary, we conclude

lim sup
k→∞

∥xk(ω)− y∥ = lim inf
k→∞

∥xk(ω)− y∥ = lim
k→∞

∥xk(ω)− y∥.

In mathematical terms, the key idea of Proposition 1 is that (i) Y has a
countable dense subset, (ii) the sequence of functions {∥xk − ·∥}k∈N has a limit
on the countable dense subset of Y , and (iii) if an equicontinuous sequence of
functions has a limit on the dense subset of a metric space, then the limit exists
on the entire metric space.
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