
Advanced Numerical Analysis, MATH 269A
E. K. Ryu
Fall 2024

Homework 3
Due on Wednesday, October 30, 2024.

Problem 1: Asymptotic orders of Euler methods. Consider the ODE

y′ = −100(y − sin(t)), y(0) = 1

for t ∈ [0, 3]. Implement explicit Euler and implicit Euler. Use the final step of the implicit
Euler simulation with N = 107 as a proxy for the true value of y(T ). Numerically observe that

y(T )− yN ∼ Chp as N → ∞.

(a) What are the estimated orders p of explicit and implicit Euler? What are the estimated
values of the constant C?

(b) Consider an incorrect implementation of implicit Euler with the update

yn+1 = yn + hf(tn, yn+1)

for n = 0, . . . , N − 1. What is the estimated order p? What is the estimated value of the
constant C?

Problem 2: Debugging through asymptotic order. Consider the ODE

y′ = 4t2 cos(y), y(0) = 0

for t ∈ [0, 1]. Recall that Heun’s method has the form

yn+1 = yn +
h

2

(
f(tn, yn) + f(tn+1, yn + hf(tn, yn))

)
for n = 0, 1, . . . , N − 1.

Consider an incorrect version of Heun’s method:

yn+1 = yn + hf(tn+1, yn + hf(tn, yn)) for n = 0, 1, . . . , N − 1.

For both methods, plot

log2

∣∣∣ y(M/2)(T )− y(M)(T )

y(M/4)(T )− y(M/2)(T )

∣∣∣
as M → ∞, where y(m)(T ) denotes the output of the simulation at the final step (the m-th
step) with N = m total steps. How do the estimated orders of the two methods compare?

Remark. In optimization, this “incorrect” method is called the extragradient method.
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Problem 3: If Newton converges, the limit is a root. Assume f : Rd → Rd is continuously
differentiable. Consider the Newton iteration

xn+1 = xn −
(
Df(xn)

)−1
f(xn) for n = 0, 1, . . . .

Assume Df(xn) is invertible for n = 0, 1, . . . so that the iterates are well defined. Assume
xn → x∞ and Df(x∞) is invertible. Show that f(x∞) = 0.

Problem 4: Heun’s region of absolute stability. Show that Heun’s method has the region of
absolute stability

S =
{
z ∈ C

∣∣ |1 + z + 1
2z

2| < 1
}
.

Clarification. Recall that Heun’s method has the form

yn+1 = yn +
h

2

(
f(tn, yn) + f(tn+1, yn + hf(tn, yn))

)
for n = 0, 1, . . . , N − 1.

Problem 5: For linear ODEs, (difference of RK) = (RK on difference). Let {x(t)}Tt=0 and
{y(t)}Tt=0 be solutions to the same linear ODE with different initial conditions:

x′(t) = c+Ax, x(0) = x0

y′(y) = c+Ay, y(0) = y0,

where c ∈ Rd and A ∈ Rd×d. Let {xn}Nn=0 and {yn}Nn=0 be outputs of an RK method applied
to the same linear ODE. Let zn = xn − yn for n = 0, . . . , N . Show that {zn}Nn=0 is the output
of the same RK method applied to the ODE

z′(t) = Az, z(0) = x0 − y0.

Clarification. Let z(t) = x(t)− y(t). By linearity, it is clear that

z′(t) = Az, z(0) = x0 − y0.

The question is whether the difference of the RK simulations zn = xn − yn is equal to RK
applied to the difference of the ODEs z′(t) = Az.

Hint. Recall that an s-stage RK method on the ODE y′ = f(t, y) is defined by the update

yn+1 = yn + h

s∑
i=1

biki

ki = f
(
tn + cih, yn + h

s∑
j=1

aijkj

)
, for i = 1, . . . , s.
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Problem 6: Small enough stepsize exists. Recall that Euler and Heun’s methods have regions
of absolute stability

S =
{
z ∈ C

∣∣ |1 + z| < 1
}

and
S =

{
z ∈ C

∣∣ |1 + z + 1
2z

2| < 1
}
.

Let λi ∈ {z ∈ C |Re(z) ̸= 0} for i = 1, . . . , d. Show that there is a small enough h > 0 such that

hλi ∈ S if Re(λi) < 0 and hλi ∈ S
C

if Re(λi) > 0

for i = 1, . . . , d

3


