

Homework 3 Due on Wednesday, October 30, 2024.

Problem 1: Asymptotic orders of Euler methods. Consider the ODE

$$y' = -100(y - \sin(t)),$$
 $y(0) = 1$

for $t \in [0,3]$. Implement explicit Euler and implicit Euler. Use the final step of the implicit Euler simulation with $N = 10^7$ as a proxy for the true value of y(T). Numerically observe that

$$y(T) - y_N \sim Ch^p$$
 as $N \to \infty$.

- (a) What are the estimated orders p of explicit and implicit Euler? What are the estimated values of the constant C?
- (b) Consider an incorrect implementation of implicit Euler with the update

$$y_{n+1} = y_n + hf(\mathbf{t_n}, y_{n+1})$$

for n = 0, ..., N - 1. What is the estimated order p? What is the estimated value of the constant C?

Problem 2: Debugging through asymptotic order. Consider the ODE

$$y' = 4t^2 \cos(y), \qquad y(0) = 0$$

for $t \in [0,1]$. Recall that Heun's method has the form

$$y^{n+1} = y_n + \frac{h}{2} (f(t_n, y_n) + f(t_{n+1}, y_n + hf(t_n, y_n)))$$
 for $n = 0, 1, \dots, N - 1$.

Consider an incorrect version of Heun's method:

$$y^{n+1} = y_n + hf(t_{n+1}, y_n + hf(t_n, y_n))$$
 for $n = 0, 1, ..., N - 1$.

For both methods, plot

$$\log_2 \Big| \frac{y^{(M/2)}(T) - y^{(M)}(T)}{y^{(M/4)}(T) - y^{(M/2)}(T)} \Big|$$

as $M \to \infty$, where $y^{(m)}(T)$ denotes the output of the simulation at the final step (the *m*-th step) with N = m total steps. How do the estimated orders of the two methods compare?

Remark. In optimization, this "incorrect" method is called the extragradient method.

Problem 3: If Newton converges, the limit is a root. Assume $f: \mathbb{R}^d \to \mathbb{R}^d$ is continuously differentiable. Consider the Newton iteration

$$x_{n+1} = x_n - (Df(x_n))^{-1} f(x_n)$$
 for $n = 0, 1, ...$

Assume $Df(x_n)$ is invertible for $n=0,1,\ldots$ so that the iterates are well defined. Assume $x_n \to x_\infty$ and $Df(x_\infty)$ is invertible. Show that $f(x_\infty) = 0$.

Problem 4: Heun's region of absolute stability. Show that Heun's method has the region of absolute stability

$$S = \big\{ z \in \mathbb{C} \, \big| \, |1 + z + \tfrac{1}{2} z^2| < 1 \big\}.$$

Clarification. Recall that Heun's method has the form

$$y^{n+1} = y_n + \frac{h}{2} (f(t_n, y_n) + f(t_{n+1}, y_n + hf(t_n, y_n)))$$
 for $n = 0, 1, \dots, N - 1$.

Problem 5: For linear ODEs, (difference of RK) = (RK on difference). Let $\{x(t)\}_{t=0}^T$ and $\{y(t)\}_{t=0}^T$ be solutions to the same linear ODE with different initial conditions:

$$x'(t) = c + Ax,$$
 $x(0) = x_0$
 $y'(y) = c + Ay,$ $y(0) = y_0,$

where $c \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times d}$. Let $\{x_n\}_{n=0}^N$ and $\{y_n\}_{n=0}^N$ be outputs of an RK method applied to the same linear ODE. Let $z_n = x_n - y_n$ for $n = 0, \dots, N$. Show that $\{z_n\}_{n=0}^N$ is the output of the same RK method applied to the ODE

$$z'(t) = Az,$$
 $z(0) = x_0 - y_0.$

Clarification. Let z(t) = x(t) - y(t). By linearity, it is clear that

$$z'(t) = Az,$$
 $z(0) = x_0 - y_0.$

The question is whether the difference of the RK simulations $z_n = x_n - y_n$ is equal to RK applied to the difference of the ODEs z'(t) = Az.

Hint. Recall that an s-stage RK method on the ODE y' = f(t, y) is defined by the update

$$y_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_i$$

 $k_i = f(t_n + c_i h, y_n + h \sum_{i=1}^{s} a_{ij} k_j), \quad \text{for } i = 1, \dots, s.$

Problem 6: Small enough stepsize exists. Recall that Euler and Heun's methods have regions of absolute stability

$$S = \left\{ z \in \mathbb{C} \,\middle|\, |1 + z| < 1 \right\}$$

and

$$S = \left\{ z \in \mathbb{C} \, \middle| \, |1 + z + \frac{1}{2}z^2| < 1 \right\}.$$

Let $\lambda_i \in \{z \in \mathbb{C} \mid \text{Re}(z) \neq 0\}$ for $i = 1, \dots, d$. Show that there is a small enough h > 0 such that

$$h\lambda_i \in S$$
 if $\operatorname{Re}(\lambda_i) < 0$ and $h\lambda_i \in \overline{S}^C$ if $\operatorname{Re}(\lambda_i) > 0$

for $i = 1, \dots, d$