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Line segment

Given z € R" and y € R",
Oz + (1 —-0)y

is a point in between x and y if 6 € [0,1].

The set of all points between a given z € R™ and y € R™
{0z+(1—-0)y|0€[0,1]}

is called the line segment between = and y
e Y
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Convex combinations
Given z1,...,xr € R",
01z + -+ Oy
is called a convex combination or a weighted average of x4, .

01,...,0,>0and 0y +---+ 0, = 1.

Given z1,...,x € R", the set of all convex combinations

conv({z1,...,xk}) = {61x1+ - +0pxy |01, ...,0, >0, 01+

is called the convex hull of x1, ..., xk.
T3 T2

= conv({z1,x2,x3})

T1

ey Tk if

0, = 1}



Convex sets

We say a set C' C R" is convex if
bz + (1—-0)y € C, Ve,ye C,6¢e(0,1).

In other words, C'is convex if z,y € C implies the line segment
connecting x and y is wholly contained in C.

TODO: Add picture



Convex functions

We say a function f: R®™ — R is convex if

l.e., f is convex if the chord (line segment) connecting (z, f(z)) and
(y, f(y)) lies above the graph of f.

TODO: Picture

We say f: R®™ — R is concave if —f is convex.



Strictly convex functions

Recall that f: R™ — R is convex if

(Our prior definition of convexity definition is equivalent to this.)

We say f: R™ — R is strictly convex if
[0+ (1=0)y) <0f(x)+(1-0)f(y), Va,yeC azsy 0c(0,1).

l.e., f is strictly convex if the chord connecting (z, f(z)) and (y, f(y))
lies strictly above the graph of f (excluding the endpoints).



No bad local minima for cvx. functions

Theorem.
Let f be convex. Then any local minimizer is a global minimizer.

Thus, when we minimize convex functions, we never get stuck at bad
local minima because there aren’t any bad local minima.

lllustration of proof. Let x, be a local minimizer. Assume for
contradiction that x, is not a global minimum.

x' (1-6)X*+6 4

7

Draw a contradiction because the chord is below the graph for 8 ~ 0.



No bad local minima for cvx. functions

Proof. Let z, € R" be a local minimizer of f. Assume for contradiction
that there is y € R™ such that f(y) < f(x,), i.e., assume for
contradiction that x, is not a global minimizer. By convexity,

F(L=0)z, +0y) < (1= 0)f () +0f(y) < flas)

for any 6 € (0,1), even for 0 very close to 0. However, z, is a local

minimizer, so f((1 — 0)z, + 0y) > f(x,) for 0 sufficiently close to 0, and
we have a contradiction. Thus we conclude that such y cannot exist, i.e.,
T, is a global minimizer. O



Gradient provides global lower bound for cvx. functions

Theorem.
Let f: R™ — R be convex. Assume f is differentiable at x. Then,

fy) > fx) +(Vf(z),y—=x), VyeR"

Livtt-order Taylor expansion of £ obmt X

x isa plobal lower bound oF +.

lllustration of proof.

above lin fl"w)‘l
:‘/z and CHoe 0y
. o Sime {(craxce o0p)
: C s below the chu,
x 8)xtey s
below chord by convexity

Qs 6> live becomes +ivit-order Taylor exponsion of £ obout X




Gradient provides global lower bound for cvx. functions

Theorem.
Let f: R™ — R be convex. Assume f is differentiable at x. Then,

fy) = f@) +(Vf(x),y—z), VyeR"
Proof. By convexity,

fle+0(y—2) <(1-0)f(x)+0f(y), VOe(0,1)
Reorganizing, we get

flz+0y—x) - fz)
0 )

fly) > flx) + Ve e (0,1).

By taking 8 — 0, we get the desired inequality. O
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Gradient provides global lower bound for cvx. functions

The inequality
fy) = f(@) +(Vf(zx),y—z)

is called the convexity inequality.

It turns out that the convexity inequality is equivalent to convexity, i.e., a
differentiable f: R™ — R is convex if and only if it satisfies the convexity
inequality.
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Basic calculus of convex sets and functions

Theorem.
The intersection of convex sets is convex.

Theorem.
A nonnegative combination of convex functions is convex.

Theorem.
A sublevel set of a convex function is convex.
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Basic calculus of convex sets and functions

Theorem.
The intersection of convex sets is convex.

Soif A CR™ and B C R™ are convex sets, then A N B are convex.

» The intersection can be arbitrary, i.e., the intersection can be over
countably or uncountably infinite convex sets.

» To clarify, an empty set is defined to be a convex set, and the
intersection of convex sets can be empty.
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Basic calculus of convex sets and functions

Theorem.
A nonnegative combination of convex functions is convex.

l.e., if aq,...,ap are nonnegative scalars and f1,..., fi are convex
functions, then oy f1 + - -+ + ay fr is convex.

» If f is convex, then af is convex and —a.f is concave if a > 0.

» Often, one shows that an f is convex by arguing that f = g + h and
showing that g and h are convex.
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Basic calculus of convex sets and functions

Theorem.
A sublevel set of a convex function is convex.

For any f: R™ — R and « € R, the a-sublevel set of f is defined as
{z|f(z) <a} CR,

which is the set of x attaining function value better than a.
» In particular, this implies that the set of minimizers of a convex
function is convex.

> Often, one shows that a set is convex by showing that it is a sublevel
set of a convex function.
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Convexity via monotonicity

For differentiable f, convexity is monotonicity of f’.

Theorem.
A differentiable univariate function f: R — R is convex if and only if f’
is non-decreasing.

(To clarify, convex functions need not be differentiable.)

Proof. (=) Assume f is convex. Then, by the convexity inequality,

fy) > f(@) + f'(2)(y —2)
f(@) > fly) + f(y)(z—y)

for all z,y € R. Adding the two, we get
(f' (@) = ()& —y) 20,

which implies f'(z) > f'(y) if x > y, i.e. f’is non-decreasing.
16



Convexity via monotonicity

(«) Assume f’: R — R is non-decreasing. Let z = 0z + (1 — )y with
6 € [0,1]. Then,

f) -G = [ "ty di > / TP dt= )y - 2)
f@)- 1) = [ Py de> - / @) dt= ) 2)

multiplying the first inequality by (1 — 6) and the second my 6 and
adding them gives us

0(x)+ (1= 0)f(y) — f(z) = f'(2) Bz + (1 — 0)y — z) =0,

=0

which is the definition of convexity.
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Convexity via curvature

For twice-differentiable f, convexity is positive (nonnegative) curvature.

Theorem.

A twice-differentiable univariate function f: R — R is convex if and only
if f(x) >0 for all z € R.

Proof. From the previous theorem, f is convex if and only if f’ is
non-decreasing. Since f’ is assumed to be differentiable, this holds if and
only if f” > 0. 0

For multivariate convex functions, the curvature condition is given by
eigenvalues of the Hessian. (We omit the proof.)

Theorem.
A twice-differentiable multivariate function f: R™ — R is convex if and
only V2 f(x) has nonnegative eigenvalues for all x € R.
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Affine functions are convex

Theorem.
An affine function is convex.

(A function f: R™ — R is said to be affine is f(z) = (a,x) + b for some
ac€R"and beR.)

Proof 1. An affine function has 0 curvature, which is nonnegative. O
Proof 2. If f is affine,

f0z+ (1 —0)y) ={a,0x+ (1—0)y)+b
=6(a,z) +0b+ (1 —0){a,y) + (1 —0)b
=0f(z)+(1-0)f(y)
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Cocoercivity inequality for smooth convex functions

Theorem.
Let f: R™ — R be convex and L-smooth. Then,

F() 2 @)+ (V(@y —2) + 5 VI ) - V@I, Yoy € R

Proof. Let
9(y) = f(y) = (Vf(2),y).

Then z is a minimizer of g, since g is convex and Vg(x) = 0 by
construction. Since g is L-smooth, the L-smoothness lemma gives us

o(r) < gy +0) < gly) + (Vol).8) + 2|87, V6 R
Now let § = —1+Vg(y) = —1(Vf(y) — Vf(z)) and we get

£(2) ~ (V$(),2) < F0) ~ (V(@)o) — 5719907

Rearranging the terms, we conclude the statement. O



Cocoercivity inequality for smooth convex functions

This inequality
1
F) = f(@) + (VF(@)y = 2) + 57 V() - V@)
is called the cocoercivity inequality for smooth convex functions.

Note that this is stronger than the convexity inequality

fly) > f(x) + (Vf(2),y — 2),

which holds for differentiable convex functions.
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Projection onto convex sets

Projection! of p € R™ onto C'is the point within C that is closest to p.
Is this notion well-defined?

Theorem.
Let C C R™ be a nonempty closed convex set and let p € R™. Then

lc(p) = argmin [z — p|,
zeC
where || - || is the standard Euclidean norm, uniquely exists.

“ ¢
Te Cp)
P

lllustration when C'is nonempty closed convex. (Setting of the theorem)

Ln linear algebra, our notion of projection corresponds to orthogonal projections
but not oblique projections.
22



Projection onto convex sets

[llustration when C' is open. The projection is not attained.

c

P

[llustration when C' is not convex. Projection may not be unique.
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Projection onto convex sets
Proof. Clearly,
IIo(p) = argmin ||z — p|| = argmin ||z —pHQ.
zeC zeC

Since ||z — p||? is a strictly convex function of f, a minimizer, if exists,
must be unique. (So, there are 0 or 1 minimizers.)

Let {x}r be a sequence such that
—p|l — inf ||z —p]|.
i~ pl > inf 1z pl

Since {xy } is bounded, it has a convergent subsequence Tp; = Too € C
by the Bolzano—\Weierstrass theorem and closedness of C'. By continuity
of ||z — p||? as a function of =, we conclude

2 : 2
— — inf llz —
lwoe = oI = inf [l — p|

i.e., Zoo is @ minimizer. (So, there are more than 0 minimizers.) O
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Projection theorem

Theorem.
Let C C R™ be a nonempty closed convex set. Then, x = Il (z) if and
only if

(y—zy,x—24) <0, Vy e C.

(Also called the Bourbaki-Cheney—Goldstein inequality.)

Te(x)=x, o directions poivt  Te(x)% X,

240° qway from eachotler

moving tovark i will
redwe distante to x
while remaining in C.

Z+ is the closest tox
Qimony rniuff in C. X
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Projection theorem

Theorem (Projection theorem).

Let C C R™ be a nonempty closed convex set. Then, x = ll¢(z) if and
only if x4 € C and

(y—x+,x—x+>§0, vyec

Proof. (=) Assume x; = argmin_ . ||z — z||? and let y € C. Then,
ly—al? > o — 22, ¥yeC
and O(y —z4) + x4 € C for § € (0,1]. So
10(y — 24) + 24 —2* > [y — ]|
Reorganizing the terms, we get
Plly — x> +20{y — x4, 24 —2) > 0.
Dividing by 6 and letting # — 0, we conclude

(y — 24,24 —2) 2 0.
26



Projection theorem

(«=) Conversely, if x4 € C and
(y—z4,0p —x) >0, VyedC,
then
Ity = 2) = (24 — @) + 2y — 24,24 —2) 20,
Expanding the squares, we get
ly — al? + llzg — 2|* = 2(z4 — 2,24 —2) 20,
and we conclude
ly —z[* > l|lz4 — 2|,  VyeO,

i.e., Ty = Hc(l‘)

VyeC.

VyeC,
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—2)>0
||y*13+||2+2<y7$+,5€+ SC> = Y,

VyeC,
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Projection is nonexpansive

Theorem.

Let C C R"™ be a nonempty closed convex set. Then Ilg: R™ — R”™ is a
nonexpansive operator.

In other words, if x4 = ¢ (z) and y4+ = He(y), then

4 =yl <l =yl

L C 5 nam-omvex
e may net be nonexpansive

distame gets
smaller after projection
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Projection is nonexpansive

Theorem.
Let C C R™ be a nonempty closed convex set. Then Ilo: R™ — R” is a
nonexpansive operator.

Proof. Let z,y € R", ;. = ¢(z), and y+ = He(y). By the projection
theorem,

(y+ —zq, v —x4) <
<

0
(4 =y, ¥y —ys) <0.

Summing these two inequalities, we get
(T4 =y 24 —y4) S (T4 — Y4,z —Y).
Using Cauchy-Schwartz, we get

lzs =y 1* < (24 =y, 2 = y) < oy =y [lllz = yll.

Dividing by ||z+ — y+| (when nonzero), we conclude the statement. [
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