## **Chapter A: Convex Analysis**

Ernest K. Ryu

MATH 164: Optimization University of California, Los Angeles Department of Mathematics

Last edited: February 12, 2025

# Line segment

Given  $x \in \mathbb{R}^n$  and  $y \in \mathbb{R}^n$ ,

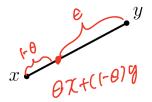
$$\theta x + (1 - \theta)y$$

is a point in between x and y if  $\theta \in [0, 1]$ .

The set of all points between a given  $x \in \mathbb{R}^n$  and  $y \in \mathbb{R}^n$ 

$$\{\theta x + (1 - \theta)y \mid \theta \in [0, 1]\}$$

is called the *line segment* between x and y



### **Convex combinations**

Given  $x_1, \ldots, x_k \in \mathbb{R}^n$ ,

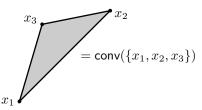
$$\theta_1 x_1 + \dots + \theta_k x_k$$

is called a *convex combination* or a *weighted average* of  $x_1, \ldots, x_k$  if  $\theta_1, \ldots, \theta_k \geq 0$  and  $\theta_1 + \cdots + \theta_k = 1$ .

Given  $x_1, \ldots, x_k \in \mathbb{R}^n$ , the set of all convex combinations

$$\mathsf{conv}(\{x_1,\dots,x_k\}) = \{\theta_1x_1 + \dots + \theta_kx_k \,|\, \theta_1,\dots,\theta_k \geq 0,\, \theta_1 + \dots + \theta_k = 1\}$$

is called the *convex hull* of  $x_1, \ldots, x_k$ .



#### Convex sets

We say a set  $C \subseteq \mathbb{R}^n$  is *convex* if

$$\theta x + (1 - \theta)y \in C, \quad \forall x, y \in C, \ \theta \in (0, 1).$$

In other words, C is convex if  $x,y\in C$  implies the line segment connecting x and y is wholly contained in C.

TODO: Add picture

### **Convex functions**

We say a function  $f: \mathbb{R}^n \to \mathbb{R}$  is *convex* if

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad \forall x, y \in \mathbb{R}^n, \ \theta \in [0, 1].$$

I.e., f is convex if the chord (line segment) connecting (x,f(x)) and (y,f(y)) lies above the graph of f.

TODO: Picture

We say  $f : \mathbb{R}^n \to \mathbb{R}$  is *concave* if -f is convex.

## **Strictly convex functions**

Recall that  $f: \mathbb{R}^n \to \mathbb{R}$  is convex if

$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y), \quad \forall x, y \in C, x \ne y, \theta \in (0,1).$$

(Our prior definition of convexity definition is equivalent to this.)

We say  $f: \mathbb{R}^n \to \mathbb{R}$  is *strictly convex* if

$$f(\theta x + (1-\theta)y) < \theta f(x) + (1-\theta)f(y), \qquad \forall \, x,y \in C, \, x \neq y, \, \theta \in (0,1).$$

I.e., f is strictly convex if the chord connecting (x, f(x)) and (y, f(y)) lies strictly above the graph of f (excluding the endpoints).

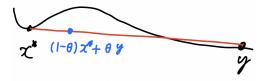
## No bad local minima for cvx. functions

### Theorem.

Let f be convex. Then any local minimizer is a global minimizer.

Thus, when we minimize convex functions, we never get stuck at bad local minima because there aren't any bad local minima.

**Illustration of proof.** Let  $x_{\star}$  be a local minimizer. Assume for contradiction that  $x_{\star}$  is not a global minimum.



Draw a contradiction because the chord is below the graph for  $\theta \approx 0$ .

### No bad local minima for cvx. functions

**Proof.** Let  $x_{\star} \in \mathbb{R}^n$  be a local minimizer of f. Assume for contradiction that there is  $y \in \mathbb{R}^n$  such that  $f(y) < f(x_{\star})$ , i.e., assume for contradiction that  $x_{\star}$  is not a global minimizer. By convexity,

$$f((1-\theta)x_{\star} + \theta y) \le (1-\theta)f(x_{\star}) + \theta f(y) < f(x_{\star})$$

for any  $\theta \in (0,1)$ , even for  $\theta$  very close to 0. However,  $x_\star$  is a local minimizer, so  $f((1-\theta)x_\star+\theta y) \geq f(x_\star)$  for  $\theta$  sufficiently close to 0, and we have a contradiction. Thus we conclude that such y cannot exist, i.e.,  $x_\star$  is a global minimizer.  $\Box$ 

# Gradient provides global lower bound for cvx. functions

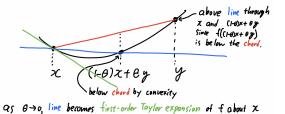
### Theorem.

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be convex. Assume f is differentiable at x. Then,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \quad \forall y \in \mathbb{R}^n.$$



### Illustration of proof.



# Gradient provides global lower bound for cvx. functions

### Theorem.

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be convex. Assume f is differentiable at x. Then,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \quad \forall y \in \mathbb{R}^n.$$

Proof. By convexity,

$$f(x + \theta(y - x)) \le (1 - \theta)f(x) + \theta f(y), \quad \forall \theta \in (0, 1).$$

Reorganizing, we get

$$f(y) \ge f(x) + \frac{f(x + \theta(y - x)) - f(x)}{\theta}, \quad \forall \theta \in (0, 1).$$

By taking  $\theta \to 0$ , we get the desired inequality.

# Gradient provides global lower bound for cvx. functions

The inequality

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$

is called the convexity inequality.

It turns out that the convexity inequality is equivalent to convexity, i.e., a differentiable  $f\colon \mathbb{R}^n \to \mathbb{R}$  is convex if and only if it satisfies the convexity inequality.

#### Theorem.

The intersection of convex sets is convex.

#### Theorem.

A nonnegative combination of convex functions is convex.

#### Theorem.

A sublevel set of a convex function is convex.

### Theorem.

The intersection of convex sets is convex.

So if  $A \subseteq \mathbb{R}^n$  and  $B \subseteq \mathbb{R}^n$  are convex sets, then  $A \cap B$  are convex.

- ► The intersection can be arbitrary, i.e., the intersection can be over countably or uncountably infinite convex sets.
- ► To clarify, an empty set is defined to be a convex set, and the intersection of convex sets can be empty.

### Theorem.

A nonnegative combination of convex functions is convex.

I.e., if  $\alpha_1, \ldots, \alpha_k$  are nonnegative scalars and  $f_1, \ldots, f_k$  are convex functions, then  $\alpha_1 f_1 + \cdots + \alpha_k f_k$  is convex.

- ▶ If f is convex, then  $\alpha f$  is convex and  $-\alpha f$  is concave if  $\alpha \geq 0$ .
- ▶ Often, one shows that an f is convex by arguing that f = g + h and showing that g and h are convex.

## Theorem.

A sublevel set of a convex function is convex.

For any  $f: \mathbb{R}^n \to \mathbb{R}$  and  $\alpha \in \mathbb{R}$ , the  $\alpha$ -sublevel set of f is defined as

$$\{x \mid f(x) \le \alpha\} \subseteq \mathbb{R}^n,$$

which is the set of x attaining function value better than  $\alpha$ .

- In particular, this implies that the set of minimizers of a convex function is convex.
- Often, one shows that a set is convex by showing that it is a sublevel set of a convex function.

# Convexity via monotonicity

For differentiable f, convexity is monotonicity of f'.

### Theorem.

A differentiable univariate function  $f: \mathbb{R} \to \mathbb{R}$  is convex if and only if f' is non-decreasing.

(To clarify, convex functions need not be differentiable.)

**Proof.** ( $\Rightarrow$ ) Assume f is convex. Then, by the convexity inequality,

$$f(y) \ge f(x) + f'(x)(y - x)$$
  
$$f(x) \ge f(y) + f'(y)(x - y)$$

for all  $x, y \in \mathbb{R}$ . Adding the two, we get

$$(f'(x) - f'(y))(x - y) \ge 0,$$

which implies  $f'(x) \ge f'(y)$  if x > y, i.e. f' is non-decreasing.

## Convexity via monotonicity

( $\Leftarrow$ ) Assume  $f'\colon\mathbb{R}\to\mathbb{R}$  is non-decreasing. Let  $z=\theta x+(1-\theta)y$  with  $\theta\in[0,1].$  Then,

$$f(y) - f(z) = \int_{z}^{y} f'(t) dt \ge \int_{z}^{y} f'(z) dt = f'(z)(y - z)$$
$$f(x) - f(z) = -\int_{x}^{z} f'(t) dt \ge -\int_{x}^{z} f'(z) dt = f'(z)(x - z)$$

multiplying the first inequality by  $(1-\theta)$  and the second my  $\theta$  and adding them gives us

$$\theta(x) + (1 - \theta)f(y) - f(z) \ge f'(z) \underbrace{\left(\theta x + (1 - \theta)y - z\right)}_{=0} = 0,$$

which is the definition of convexity.

## Convexity via curvature

For twice-differentiable f, convexity is positive (nonnegative) curvature.

#### Theorem.

A twice-differentiable univariate function  $f: \mathbb{R} \to \mathbb{R}$  is convex if and only if  $f''(x) \geq 0$  for all  $x \in \mathbb{R}$ .

**Proof.** From the previous theorem, f is convex if and only if f' is non-decreasing. Since f' is assumed to be differentiable, this holds if and only if  $f'' \geq 0$ .

For multivariate convex functions, the curvature condition is given by eigenvalues of the Hessian. (We omit the proof.)

#### Theorem.

A twice-differentiable multivariate function  $f: \mathbb{R}^n \to \mathbb{R}$  is convex if and only  $\nabla^2 f(x)$  has nonnegative eigenvalues for all  $x \in \mathbb{R}$ .

### Affine functions are convex

### Theorem.

An affine function is convex.

(A function  $f\colon \mathbb{R}^n \to \mathbb{R}$  is said to be affine is  $f(x)=\langle a,x\rangle+b$  for some  $a\in \mathbb{R}^n$  and  $b\in \mathbb{R}$ .)

**Proof 1.** An affine function has 0 curvature, which is nonnegative.

**Proof 2.** If f is affine,

$$f(\theta x + (1 - \theta)y) = \langle a, \theta x + (1 - \theta)y \rangle + b$$
  
=  $\theta \langle a, x \rangle + \theta b + (1 - \theta)\langle a, y \rangle + (1 - \theta)b$   
=  $\theta f(x) + (1 - \theta)f(y)$ .

# Cocoercivity inequality for smooth convex functions

### Theorem.

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be convex and L-smooth. Then,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|^2, \quad \forall x, y \in \mathbb{R}^n.$$

#### Proof. Let

$$g(y) = f(y) - \langle \nabla f(x), y \rangle.$$

Then x is a minimizer of g, since g is convex and  $\nabla g(x) = 0$  by construction. Since g is L-smooth, the L-smoothness lemma gives us

$$g(x) \le g(y+\delta) \le g(y) + \langle \nabla g(y), \delta \rangle + \frac{L}{2} \|\delta\|^2, \quad \forall \delta \in \mathbb{R}^n.$$

Now let  $\delta = -\frac{1}{L}\nabla g(y) = -\frac{1}{L}(\nabla f(y) - \nabla f(x))$  and we get

$$f(x) - \langle \nabla f(x), x \rangle \le f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} ||\nabla g(y)||^2.$$

Rearranging the terms, we conclude the statement.

## Cocoercivity inequality for smooth convex functions

This inequality

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|^2$$

is called the *cocoercivity inequality* for smooth convex functions.

Note that this is stronger than the convexity inequality

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle,$$

which holds for differentiable convex functions.

## Projection onto convex sets

Projection<sup>1</sup> of  $p \in \mathbb{R}^n$  onto C is the point within C that is closest to p. Is this notion well-defined?

#### Theorem.

Let  $C \subseteq \mathbb{R}^n$  be a nonempty closed convex set and let  $p \in \mathbb{R}^n$ . Then

$$\Pi_C(p) = \operatorname*{argmin}_{x \in C} \|x - p\|,$$

where  $\|\cdot\|$  is the standard Euclidean norm, uniquely exists.

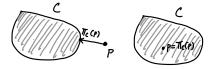


Illustration when  ${\it C}$  is nonempty closed convex. (Setting of the theorem)

<sup>&</sup>lt;sup>1</sup>In linear algebra, our notion of projection corresponds to orthogonal projections but not oblique projections.

## Projection onto convex sets



Illustration when  ${\cal C}$  is open. The projection is not attained.

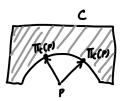


Illustration when  ${\cal C}$  is not convex. Projection may not be unique.

# Projection onto convex sets

Proof. Clearly,

$$\Pi_C(p) = \underset{x \in C}{\operatorname{argmin}} \|x - p\| = \underset{x \in C}{\operatorname{argmin}} \|x - p\|^2.$$

Since  $||x-p||^2$  is a strictly convex function of f, a minimizer, if exists, must be unique. (So, there are 0 or 1 minimizers.)

Let  $\{x_k\}_k$  be a sequence such that

$$||x_k - p|| \to \inf_{x \in C} ||x - p||.$$

Since  $\{x_k\}_k$  is bounded, it has a convergent subsequence  $x_{k_j} \to x_\infty \in C$  by the Bolzano–Weierstrass theorem and closedness of C. By continuity of  $\|x-p\|^2$  as a function of x, we conclude

$$||x_{\infty} - p||^2 = \inf_{x \in C} ||x - p||^2,$$

i.e.,  $x_{\infty}$  is a minimizer. (So, there are more than 0 minimizers.)

# **Projection theorem**

### Theorem.

Let  $C\subseteq \mathbb{R}^n$  be a nonempty closed convex set. Then,  $x_+=\Pi_C(x)$  if and only if

$$\langle y - x_+, x - x_+ \rangle \le 0, \quad \forall y \in C.$$

(Also called the Bourbaki-Cheney-Goldstein inequality.)



## **Projection theorem**

# Theorem (Projection theorem).

Let  $C\subseteq \mathbb{R}^n$  be a nonempty closed convex set. Then,  $x_+=\Pi_C(x)$  if and only if  $x_+\in C$  and

$$\langle y - x_+, x - x_+ \rangle \le 0, \quad \forall y \in C.$$

**Proof.** ( $\Rightarrow$ ) Assume  $x_+ = \operatorname{argmin}_{z \in C} ||z - x||^2$  and let  $y \in C$ . Then,

$$||y - x||^2 \ge ||x_+ - x||^2, \quad \forall y \in C$$

and  $\theta(y-x_+)+x_+\in C$  for  $\theta\in(0,1]$ . So

$$\|\theta(y-x_+) + x_+ - x\|^2 \ge \|x_+ - x\|^2.$$

Reorganizing the terms, we get

$$\theta^2 ||y - x_+||^2 + 2\theta \langle y - x_+, x_+ - x \rangle \ge 0.$$

Dividing by  $\theta$  and letting  $\theta \to 0$ , we conclude

$$\langle y - x_+, x_+ - x \rangle \ge 0.$$

# **Projection theorem**

 $(\Leftarrow)$  Conversely, if  $x_+ \in C$  and

$$\langle y - x_+, x_+ - x \rangle \ge 0, \quad \forall y \in C,$$

then

$$||(y-x)-(x_+-x)||^2 + 2\langle y-x_+, x_+-x\rangle \ge 0, \quad \forall y \in C.$$

Expanding the squares, we get

$$||y - x||^2 + ||x_+ - x||^2 - 2\langle x_+ - x, x_+ - x \rangle \ge 0, \quad \forall y \in C,$$

and we conclude

$$||y - x||^2 \ge ||x_+ - x||^2, \quad \forall y \in C,$$

i.e., 
$$x_{+} = \Pi_{C}(x)$$
.

$$||y - x_+||^2 + 2\langle y - x_+, x_+ - x \rangle \ge 0, \quad \forall y \in C,$$

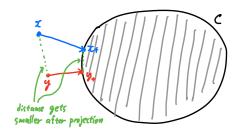
# Projection is nonexpansive

### Theorem.

Let  $C \subseteq \mathbb{R}^n$  be a nonempty closed convex set. Then  $\Pi_C \colon \mathbb{R}^n \to \mathbb{R}^n$  is a nonexpansive operator.

In other words, if  $x_+ = \Pi_C(x)$  and  $y_+ = \Pi_C(y)$ , then

$$||x_+ - y_+|| \le ||x - y||.$$



It ( is non-convex
The may not be nonexpansive

# Projection is nonexpansive

### Theorem.

Let  $C \subseteq \mathbb{R}^n$  be a nonempty closed convex set. Then  $\Pi_C \colon \mathbb{R}^n \to \mathbb{R}^n$  is a nonexpansive operator.

**Proof.** Let  $x, y \in \mathbb{R}^n$ ,  $x_+ = \Pi_C(x)$ , and  $y_+ = \Pi_C(y)$ . By the projection theorem,

$$\langle y_+ - x_+, x - x_+ \rangle \le 0$$
  
 $\langle x_+ - y_+, y - y_+ \rangle \le 0.$ 

Summing these two inequalities, we get

$$\langle x_+ - y_+, x_+ - y_+ \rangle \le \langle x_+ - y_+, x - y \rangle.$$

Using Cauchy-Schwartz, we get

$$||x_{+} - y_{+}||^{2} \le \langle x_{+} - y_{+}, x - y \rangle \le ||x_{+} - y_{+}|| ||x - y||.$$

Dividing by  $||x_+ - y_+||$  (when nonzero), we conclude the statement.