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Line segment

Given x ∈ Rn and y ∈ Rn,

θx+ (1− θ)y

is a point in between x and y if θ ∈ [0, 1].

The set of all points between a given x ∈ Rn and y ∈ Rn

{θx+ (1− θ)y | θ ∈ [0, 1]}

is called the line segment between x and y
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Convex combinations

Given x1, . . . , xk ∈ Rn,

θ1x1 + · · ·+ θkxk

is called a convex combination or a weighted average of x1, . . . , xk if
θ1, . . . , θk ≥ 0 and θ1 + · · ·+ θk = 1.

Given x1, . . . , xk ∈ Rn, the set of all convex combinations

conv({x1, . . . , xk}) = {θ1x1+· · ·+θkxk | θ1, . . . , θk ≥ 0, θ1+· · ·+θk = 1}

is called the convex hull of x1, . . . , xk.

x1

x2x3

= conv({x1, x2, x3})
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Convex sets

We say a set C ⊆ Rn is convex if

θx+ (1− θ)y ∈ C, ∀x, y ∈ C, θ ∈ (0, 1).

In other words, C is convex if x, y ∈ C implies the line segment
connecting x and y is wholly contained in C.

TODO: Add picture
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Convex functions

We say a function f : Rn → R is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x, y ∈ Rn, θ ∈ [0, 1].

I.e., f is convex if the chord (line segment) connecting (x, f(x)) and
(y, f(y)) lies above the graph of f .

TODO: Picture

We say f : Rn → R is concave if −f is convex.
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Strictly convex functions

Recall that f : Rn → R is convex if

f(θx+(1−θ)y) ≤ θf(x)+(1−θ)f(y), ∀x, y ∈ C, x ̸= y, θ ∈ (0, 1).

(Our prior definition of convexity definition is equivalent to this.)

We say f : Rn → R is strictly convex if

f(θx+(1−θ)y) < θf(x)+(1−θ)f(y), ∀x, y ∈ C, x ̸= y, θ ∈ (0, 1).

I.e., f is strictly convex if the chord connecting (x, f(x)) and (y, f(y))
lies strictly above the graph of f (excluding the endpoints).
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No bad local minima for cvx. functions

Theorem.
Let f be convex. Then any local minimizer is a global minimizer.

Thus, when we minimize convex functions, we never get stuck at bad
local minima because there aren’t any bad local minima.

Illustration of proof. Let x⋆ be a local minimizer. Assume for
contradiction that x⋆ is not a global minimum.

Draw a contradiction because the chord is below the graph for θ ≈ 0.

7



No bad local minima for cvx. functions

Proof. Let x⋆ ∈ Rn be a local minimizer of f . Assume for contradiction
that there is y ∈ Rn such that f(y) < f(x⋆), i.e., assume for
contradiction that x⋆ is not a global minimizer. By convexity,

f((1− θ)x⋆ + θy) ≤ (1− θ)f(x⋆) + θf(y) < f(x⋆)

for any θ ∈ (0, 1), even for θ very close to 0. However, x⋆ is a local
minimizer, so f((1− θ)x⋆ + θy) ≥ f(x⋆) for θ sufficiently close to 0, and
we have a contradiction. Thus we conclude that such y cannot exist, i.e.,
x⋆ is a global minimizer.
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Gradient provides global lower bound for cvx. functions

Theorem.
Let f : Rn → R be convex. Assume f is differentiable at x. Then,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, ∀ y ∈ Rn.

Illustration of proof.
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Gradient provides global lower bound for cvx. functions

Theorem.
Let f : Rn → R be convex. Assume f is differentiable at x. Then,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, ∀ y ∈ Rn.

Proof. By convexity,

f(x+ θ(y − x)) ≤ (1− θ)f(x) + θf(y), ∀ θ ∈ (0, 1).

Reorganizing, we get

f(y) ≥ f(x) +
f(x+ θ(y − x))− f(x)

θ
, ∀ θ ∈ (0, 1).

By taking θ → 0, we get the desired inequality.
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Gradient provides global lower bound for cvx. functions

The inequality
f(y) ≥ f(x) + ⟨∇f(x), y − x⟩

is called the convexity inequality.

It turns out that the convexity inequality is equivalent to convexity, i.e., a
differentiable f : Rn → R is convex if and only if it satisfies the convexity
inequality.
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Basic calculus of convex sets and functions

Theorem.
The intersection of convex sets is convex.

Theorem.
A nonnegative combination of convex functions is convex.

Theorem.
A sublevel set of a convex function is convex.
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Basic calculus of convex sets and functions

Theorem.
The intersection of convex sets is convex.

So if A ⊆ Rn and B ⊆ Rn are convex sets, then A ∩B are convex.

▶ The intersection can be arbitrary, i.e., the intersection can be over
countably or uncountably infinite convex sets.

▶ To clarify, an empty set is defined to be a convex set, and the
intersection of convex sets can be empty.
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Basic calculus of convex sets and functions

Theorem.
A nonnegative combination of convex functions is convex.

I.e., if α1, . . . , αk are nonnegative scalars and f1, . . . , fk are convex
functions, then α1f1 + · · ·+ αkfk is convex.

▶ If f is convex, then αf is convex and −αf is concave if α ≥ 0.

▶ Often, one shows that an f is convex by arguing that f = g + h and
showing that g and h are convex.
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Basic calculus of convex sets and functions

Theorem.
A sublevel set of a convex function is convex.

For any f : Rn → R and α ∈ R, the α-sublevel set of f is defined as

{x | f(x) ≤ α} ⊆ Rn,

which is the set of x attaining function value better than α.

▶ In particular, this implies that the set of minimizers of a convex
function is convex.

▶ Often, one shows that a set is convex by showing that it is a sublevel
set of a convex function.
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Convexity via monotonicity

For differentiable f , convexity is monotonicity of f ′.

Theorem.
A differentiable univariate function f : R → R is convex if and only if f ′

is non-decreasing.

(To clarify, convex functions need not be differentiable.)

Proof. (⇒) Assume f is convex. Then, by the convexity inequality,

f(y) ≥ f(x) + f ′(x)(y − x)

f(x) ≥ f(y) + f ′(y)(x− y)

for all x, y ∈ R. Adding the two, we get

(f ′(x)− f ′(y))(x− y) ≥ 0,

which implies f ′(x) ≥ f ′(y) if x > y, i.e. f ′ is non-decreasing.

16



Convexity via monotonicity

(⇐) Assume f ′ : R → R is non-decreasing. Let z = θx+ (1− θ)y with
θ ∈ [0, 1]. Then,

f(y)− f(z) =

∫ y

z

f ′(t) dt ≥
∫ y

z

f ′(z) dt = f ′(z)(y − z)

f(x)− f(z) = −
∫ z

x

f ′(t) dt ≥ −
∫ z

x

f ′(z) dt = f ′(z)(x− z)

multiplying the first inequality by (1− θ) and the second my θ and
adding them gives us

θ(x) + (1− θ)f(y)− f(z) ≥ f ′(z)
(
θx+ (1− θ)y − z

)︸ ︷︷ ︸
=0

= 0,

which is the definition of convexity.
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Convexity via curvature

For twice-differentiable f , convexity is positive (nonnegative) curvature.

Theorem.
A twice-differentiable univariate function f : R → R is convex if and only
if f ′′(x) ≥ 0 for all x ∈ R.
Proof. From the previous theorem, f is convex if and only if f ′ is
non-decreasing. Since f ′ is assumed to be differentiable, this holds if and
only if f ′′ ≥ 0.

For multivariate convex functions, the curvature condition is given by
eigenvalues of the Hessian. (We omit the proof.)

Theorem.
A twice-differentiable multivariate function f : Rn → R is convex if and
only ∇2f(x) has nonnegative eigenvalues for all x ∈ R.
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Affine functions are convex

Theorem.
An affine function is convex.

(A function f : Rn → R is said to be affine is f(x) = ⟨a, x⟩+ b for some
a ∈ Rn and b ∈ R.)

Proof 1. An affine function has 0 curvature, which is nonnegative.

Proof 2. If f is affine,

f(θx+ (1− θ)y) = ⟨a, θx+ (1− θ)y⟩+ b

= θ⟨a, x⟩+ θb+ (1− θ)⟨a, y⟩+ (1− θ)b

= θf(x) + (1− θ)f(y).
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Cocoercivity inequality for smooth convex functions

Theorem.
Let f : Rn → R be convex and L-smooth. Then,

f(y) ≥ f(x) + ⟨∇f(x), y− x⟩+ 1

2L
∥∇f(y)−∇f(x)∥2, ∀x, y ∈ Rn.

Proof. Let
g(y) = f(y)− ⟨∇f(x), y⟩.

Then x is a minimizer of g, since g is convex and ∇g(x) = 0 by
construction. Since g is L-smooth, the L-smoothness lemma gives us

g(x) ≤ g(y + δ) ≤ g(y) + ⟨∇g(y), δ⟩+ L

2
∥δ∥2, ∀δ ∈ Rn.

Now let δ = − 1
L∇g(y) = − 1

L (∇f(y)−∇f(x)) and we get

f(x)− ⟨∇f(x), x⟩ ≤ f(y)− ⟨∇f(x), y⟩ − 1

2L
∥∇g(y)∥2.

Rearranging the terms, we conclude the statement.
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Cocoercivity inequality for smooth convex functions

This inequality

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ 1

2L
∥∇f(y)−∇f(x)∥2

is called the cocoercivity inequality for smooth convex functions.

Note that this is stronger than the convexity inequality

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩,

which holds for differentiable convex functions.
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Projection onto convex sets

Projection1 of p ∈ Rn onto C is the point within C that is closest to p.
Is this notion well-defined?

Theorem.
Let C ⊆ Rn be a nonempty closed convex set and let p ∈ Rn. Then

ΠC(p) = argmin
x∈C

∥x− p∥,

where ∥ · ∥ is the standard Euclidean norm, uniquely exists.

Illustration when C is nonempty closed convex. (Setting of the theorem)

1In linear algebra, our notion of projection corresponds to orthogonal projections
but not oblique projections.
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Projection onto convex sets

Illustration when C is open. The projection is not attained.

Illustration when C is not convex. Projection may not be unique.
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Projection onto convex sets

Proof. Clearly,

ΠC(p) = argmin
x∈C

∥x− p∥ = argmin
x∈C

∥x− p∥2.

Since ∥x− p∥2 is a strictly convex function of f , a minimizer, if exists,
must be unique. (So, there are 0 or 1 minimizers.)

Let {xk}k be a sequence such that

∥xk − p∥ → inf
x∈C

∥x− p∥.

Since {xk}k is bounded, it has a convergent subsequence xkj
→ x∞ ∈ C

by the Bolzano–Weierstrass theorem and closedness of C. By continuity
of ∥x− p∥2 as a function of x, we conclude

∥x∞ − p∥2 = inf
x∈C

∥x− p∥2,

i.e., x∞ is a minimizer. (So, there are more than 0 minimizers.)
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Projection theorem

Theorem.
Let C ⊆ Rn be a nonempty closed convex set. Then, x+ = ΠC(x) if and
only if

⟨y − x+, x− x+⟩ ≤ 0, ∀ y ∈ C.

(Also called the Bourbaki–Cheney–Goldstein inequality.)
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Projection theorem

Theorem (Projection theorem).
Let C ⊆ Rn be a nonempty closed convex set. Then, x+ = ΠC(x) if and
only if x+ ∈ C and

⟨y − x+, x− x+⟩ ≤ 0, ∀ y ∈ C.

Proof. (⇒) Assume x+ = argminz∈C ∥z − x∥2 and let y ∈ C. Then,

∥y − x∥2 ≥ ∥x+ − x∥2, ∀ y ∈ C

and θ(y − x+) + x+ ∈ C for θ ∈ (0, 1]. So

∥θ(y − x+) + x+ − x∥2 ≥ ∥x+ − x∥2.
Reorganizing the terms, we get

θ2∥y − x+∥2 + 2θ⟨y − x+, x+ − x⟩ ≥ 0.

Dividing by θ and letting θ → 0, we conclude

⟨y − x+, x+ − x⟩ ≥ 0.
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Projection theorem

(⇐) Conversely, if x+ ∈ C and

⟨y − x+, x+ − x⟩ ≥ 0, ∀ y ∈ C,

then

∥(y − x)− (x+ − x)∥2 + 2⟨y − x+, x+ − x⟩ ≥ 0, ∀ y ∈ C.

Expanding the squares, we get

∥y − x∥2 + ∥x+ − x∥2 − 2⟨x+ − x, x+ − x⟩ ≥ 0, ∀ y ∈ C,

and we conclude

∥y − x∥2 ≥ ∥x+ − x∥2, ∀ y ∈ C,

i.e., x+ = ΠC(x).
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∥y − x+∥2 + 2⟨y − x+, x+ − x⟩ ≥ 0, ∀ y ∈ C,
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Projection is nonexpansive

Theorem.
Let C ⊆ Rn be a nonempty closed convex set. Then ΠC : Rn → Rn is a
nonexpansive operator.

In other words, if x+ = ΠC(x) and y+ = ΠC(y), then

∥x+ − y+∥ ≤ ∥x− y∥.
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Projection is nonexpansive

Theorem.
Let C ⊆ Rn be a nonempty closed convex set. Then ΠC : Rn → Rn is a
nonexpansive operator.

Proof. Let x, y ∈ Rn, x+ = ΠC(x), and y+ = ΠC(y). By the projection
theorem,

⟨y+ − x+, x− x+⟩ ≤ 0

⟨x+ − y+, y − y+⟩ ≤ 0.

Summing these two inequalities, we get

⟨x+ − y+, x+ − y+⟩ ≤ ⟨x+ − y+, x− y⟩.

Using Cauchy–Schwartz, we get

∥x+ − y+∥2 ≤ ⟨x+ − y+, x− y⟩ ≤ ∥x+ − y+∥∥x− y∥.

Dividing by ∥x+ − y+∥ (when nonzero), we conclude the statement.
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