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Gradient descent

Consider the optimization problem

minimize (),

where f: R” — R is differentiable.
Gradient descent (GD) has the form
Tpt1 = 2 — oV (k)

for k=0,1,..., where xy € R™ is a suitably chosen starting point and
o, a1, ... € Ris a positive step size sequence.

. . ? .
Under suitable conditions, we hope x; — x, for some solution z,.

LIf f is not differentiable, then gradient descent is not well defined, right?



Local vs. global minima

x, is a local minimum if f(x) > f(x,) within a small neighborhood.?
X is a global minimum if f(x) > f(x,) for all z € R™

In the worst case, finding the global minimum of an optimization problem
is difficult. (The class of non-convex optimization problems is NP-hard.)

f(x)

T

local min global min

2%f Ar > 0st. Vo st |lz — 2| <7 = f(2) > f(24)



What can we prove?

Without further assumptions, there is no hope of showing that GD finds
the global minimum since GD can never “know"” if it is stuck in a local
minimum.

We cannot prove the function value converges to the global optimum.
We instead prove V f(xx) — 0. Roughly speaking, this is similar but
weaker than proving that x;, converges to a local minimum.3

3Without further assumptions, we cannot show that xj converges to a limit, and
even x;, does converge to a limit, we cannot guarantee that that limit is not a saddle
point or even a local maximum. Nevertheless, people commonly use the argument
that z; “usually” converges and that it is “unlikely” that the limit is a local maximum
or a saddle point. More on this later.



—V [ is steepest descent direction

From vector calculus, we know that V f is the steepest ascent direction,
so —V f is the steepest descent direction. In other words,

Tk+1 = Tk — Oszf(Ik)

is moving in the steepest descent direction, which is —V f(xzy) at the
current position xg, scaled by ay > 0.

Taylor expansion of f about
fa) = flaw) + (Vf(ar)a —zp) + Oz — ).
Plugging in zj41
Farn) = fan) — allVf(zn)l* + O(aq).

For small (cautious) ay, a GD step reduces function value.



Is GD a “descent method”?

Lt1 = Tk — aka(xk)

Without further assumptions, —V f ()
only provides directional information. How
far should you go? How large should «y, be?

A step of GD need not result in descent,
ie., f(xpt1) > f(zy) is possible.

Calculus only guarantees the accuracy of :

the Taylor expansion in an infinitesimal | Y
o )1+ ) — Tk
neighborhood. f(Tk)l f(@p)(x — o)

Lk




Step size selection for GD

How do we choose the step size a, and ensure convergence?

We consider 3 solutions:

» Make an assumption allowing us to choose oy and ensures f(xy)
will descend.

— Estimate the L needed to choose ay.
» Do a line search to ensure that f(z) will descend.

» Drop the insistence that f(zx) must consistently go down.



Outline
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GD for smooth non-convex functions

Consider the optimization problem

minimize (),

where f: R™ — R is “L-smooth” (but not necessarily convex).

We consider GD with constant step size:

Tpt1 =z — aV f(xg).
(Soa=ap=a1=---.)
We will show the following.

Theorem.
Assume f: R™ — R is L-smooth and inf f > —oo. Let a € (0,2/L).
Then, the GD iterates satisfy V f(xy,) — 0.

Smooth non-convex GD



L-smoothness
For L > 0, we say f: R® — R is L-smooth if f is differentiable and

IVf(@) =Vl < Llz-yll, VayeR"

l.e., Vf: R®™ — R" is L-Lipschitz continuous. We say f is smooth if it is
L-smooth for some L > 0.

Interpretation 1: V f does not change too rapidly. This makes the
first-order Taylor expansion reliable beyond an infinitesimal neighborhood.
(Further quantified on next slide.)

If f twice-continuously differentiable, then L-smoothness is equivalent to

—L < Anin (V2 f(2)) < Amax (V2f(2)) < L,  Vz €R"

Interpretation 2: The curvature f, quantified by V2 £, has lower and
upper bounds +L.

The name “smoothness”, as used in optimization, is somewhat confusing because
in other areas of mathematics, “smoothness” often refers to infinite differentiability.



Smoothness = first-order Taylor has small remainder

For GD to work with a fixed non-adaptive step size, we need assurance
that the first-order Taylor expansion is a good approximation within a
sufficiently large neighborhood. L-smoothness provides this assurance.

Lemma.
Let f: R™ — R be L-smooth. Then

|f(z+08) = (f(2) + (Vf(2).6))] <—\|5||2 Vz,5 € R™.

Note

Ry(6;z) = f(z+6) — (f(z) + (Vf(x),0))

is the remainder between f and its first-order Taylor expansion about z.

This lemma provides a quantitative bound | R (8;2)| < O(]|6]?).

Smooth non-convex GD
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L-smoothness lower and upper bounds

The claimed inequality

[P +8) — (@) + (VF().8)] < 23]

is equivalent to

F(@) +{VF(@),6) = I8 < Fla+8) < f(a) + (VF(),6) + 5 5]

We will only prove the upper bound <. The lower bound < follows from
the same reasoning with some sign changes. (Also, we only use <.)

Smooth non-convex GD 12



Proof of the upper bound <. Define g : R — R by
g(t) = f(z+1t9).
Then g is differentiable, and its derivative is
g'(t) = (Vf(z+19),d).
Next, observe that ¢’ is (L||§|?)-Lipschitz continuous. Indeed,

9'(t1) = ¢'(to)| = [(Vf(z +t18) = Vf(z +196),0)|
< ||Vf(@+t16) — Vf(z+to0)|[I6]] < LII6|I*[tr — tol.

Finally, we conclude that
1
fla+8) = g(1) = g(0) + / J'(t)dt
1
< f@) + / (¢/(0) + L||8]1%¢) dt
0

= (@) + (V). 0) + 23]

Smooth non-convex GD 13



Summability lemma

Lemma.
Let Vo, Vp,... € R and Sy, S1, ... € R be nonnegative sequences
satisfying

Vier1 < Vi — Sk

fork=0,1,.... Then S — 0.

Key idea. S;; measures progress (decrease) made in iteration k. Since
Vi > 0, Vi, cannot decrease forever, so the progress (magnitude of Sy)
must diminish to 0.

Proof. Sum the inequality from i =0 to &
k
Vir1 + Z Si < W.
i=0
Let £ — o0 oo
> Si<V— lim Vi <1
2 k— o0
=0
Since >~ S; < oo, we conclude S; — 0.



Convergence proof for smooth non-convex functions

Theorem.
Assume f: R™ — R is L-smooth and inf f > —oco. Let a € (0,2/L).
Then, the GD iterates satisfy V f(xy,) — 0.

Proof. Use the Lipschitz gradient lemma with x = x; and
d = —aV f(xy) to obtain

f@g) < flan) — ol = GV F ()],
and

def def def
= Vit =Vi = Sk

(f(@rsr) —inf f(2)) < (f(zr) — inf f(2)) = a(l = 5) [|VF ()]
—————

>0
for a€(0,2/L)

By the summability lemma, we have ||V f(zx)||> — 0 and thus
Vf(l‘k) — 0.

Smooth non-convex GD



GD experiments and curvature

Smooth non-convex GD
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GD with line search

Consider L
minimize X
zER™ f( ),

where f: R™ — R is differentiable but not necessarily smooth.

GD with exact line search

gr = V f(xy)
ay € argmin f(zp — agy)
a€eR

LTh+1 = Tk — Oéka(’JJk)

performs a one-dimensional search in the direction of the gradient.

Theorem.
Let f: R™ — R be differentiable. Then GD with exact line search satisfies

f(@r) i foo € [-00,00).

Proof. By construction, we have f(zr11) < f(xx). A non-increasing
sequence of real numbers converges to a value in [—c0, 00). O



GD with inexact line search

Computing the exact line search is often expensive and unnecessary.

GD with inexact line search
InexLineSearch(f, z, g) :

a < // some initial constant > 0
Ik = Vf(x.k) if g==0: return a
ay, = InexLineSearch(f, zy, gr) while f(z — ag) > f(x)

Th+1 :{Ek—Oéka(l’k) Oz(*Oé/Q

return «

This inexact line search is also called a backtracking line search.

Theorem.
If f is differentiable, the line search terminates in finite steps.

Proof. Since f is differentiable,
f(z —ag) = f(z) - allg|® + o(a)
and there is a threshold A > 0 such that f(z — ag) < f(x) for

a € (0, A). The halving process of « eventually results in
f(z — ag) < f(z) (by coincidence) or enters the interval a € (0, 4). [



GD with inexact line search

The starting step size § > 0 is a parameter to be tuned.

With large 8, we have to perform the backtracking loop many times, but
we have the opportunity to take a long step.

With small 3, the backtracking loop may terminate more quickly, but we
won't take steps larger than 5.

One can modify the algorithm to adaptively decrease or increase 8 based
on the history of backtracking.

Smooth non-convex GD
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How to choose the starting point z

Most (if not all) optimization algorithms require a starting point xq. It is
optimal to choose x( to be close (or equal to) x,, but, of course, we
don't know where x, is.

If one has an estimate of x, based on problem structure, should utilize it.

In convex optimization problems, we often have convergence to the
global minimum regardless of z, so it is okay to choose xy = 0.

For non-convex optimization problems, the general prescription is to start
with 2y = random noise.

In some non-convex optimization problems (such as training deep neural
networks), one must not use zp = 0, and a well-tuned random
initialization is crucial.

Smooth non-convex GD
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Smooth convex GD

Smooth convex GD
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21



Convex optimization

The problem
minimize f(z)

is a convex optimization problem if f: R™ — R is convex, i.e., if

fOx+(1-0)y) <O0f(z)+ (1 —-0)f(y), Vz,y e R", 0 €0,1].

Finding the global minimum of a convex function is tractable.

“In fact, the great watershed in optimization isn't between lin-
earity and nonlinearity, but convexity and nonconvexity.”
— R. Tyrrell Rockafellar, in SIAM Review, 1993

(In other areas of mathematics, linear things tend to be easier, while
nonlinear things tend to be significantly harder, but not in optimization.)

Smooth convex GD 22



—V [ points toward z,

Why can GD find global minimizers of convex functions?

Reason 1. Moving in the —V f direction reduces the function value,
taking you to a local minimum, which is a global minimum by convexity.

Reason 2. The —V f direction points toward global minimizers.
(This is the more fundamental reason.)

Theorem.

Let f: R™ — R be differentiable and convex.
Assume f has a minimizer and let x, € argmin f.
Let x € R™ such that V f(x) # 0. Then,

(e —x, =V f(z)) > 0.

Smooth convex GD
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—V [ points toward z,

Theorem.
Let f: R™ — R be differentiable and convex. Assume f has a minimizer
and let x, € argmin f. Let x € R™ such that V f(x) # 0. Then,

(zy —x, =V f(x)) > 0.
Proof. Note that « is not a local or global minimizer since V f(x) # 0.
So, f(z) — f(xx) > 0. By the convexity inequality, we conclude

(ve =2, =V [(2)) = f(2) = f(2:) > 0. -

Consequence: For small oy, a GD step reduces the distance to a solution.

ek — aV f(wr) —aal® = llow — 2]l = 200 fon — 20, VI (2n)) +oR [V (22) |
~—_— ——

=Tk+1

<k — @ -0

for sufficiently small a, > 0, if V f(xy) # 0.
Smooth convex GD 24



Convergence of GD for smooth convex functions

We quickly establish an inequality we need for the subsequent proof.

Lemma.
Let f: R™ — R be L-smooth and convex. Let x, € argmin f be a
minimizer. Then

1
(Vi(@)z—w) = ZIIVF@)]?
Proof. Note, Vf(x,) = 0. By the cocoercivity inequality, we have

1
flz) 2 f@) + (Vf(@), 20 = 2) + 52 V(@)
and 1
> — 2,
f@) 2 () + 571V F@)
Adding these two inequalities yield the stated result.

Smooth convex GD
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Convergence of GD for smooth convex functions

Theorem.

Let f: R™ — R be L-smooth and convex. Assume f has a minimizer.
Then GD with constant stepsize « satisfying « € (0,2/L) converges in
the sense of xj, — x, for some x, € argmin f.

Proof. Let z, € argmin f. Using the cocoercivity inequality,
|21 = Zull” = |2 — 22 — aV f ()]
= o = Zull? = 20(V f(n), 21 — Z4) + 2|V f ()2
< o = 22 = FIVF@i)l? + 2V f (@)1
= ek = &.|* — a(F — @) [VF()]*.
N

>0

By the summability lemma, V f(x) — 0.

Smooth convex GD
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Convergence of GD for smooth convex functions

The proof of x — x, for some z, € argmin f is analysis-heavy, and it
somewhat exceeds the scope of this class. Nevertheless, we show it for
the sake of completeness.

By,
[2ppr = Zel|® < oy — &2 (1)

|zx — %4]|? is a decreasing sequence and thus has a limit, but the limit is
not necessarily 0 (especially if the minimizer is not unique). We argue
that 2, — x, for some x, € argmin f with the steps: (i) zx has an
accumulation point (i) this accumulation point is a minimizer (iii) this is
the only accumulation point.
(i) Inequality (1) tells us {x}x lie within {z| ||z — Z*|| < ||lxzo — Z*||}, a
compact set, so {z}x has an accumulation point x,.
(i) Accumulation point x, satisfies Vf(x,) =0, as Vf(zr) — and Vf
is continuous, i.e., z, € argmin f.
(iii) Apply (1) to this accumulation point x, € argmin f (i.e., plug in
Z, = x,) to conclude ||z} — x| monotonically decreases to 0, i.e.,

the entire sequence converges to . 0



Convergence of GD for smooth convex functions

Note, x — x, immediately implies f(xzx) — f(x,) and V f(xg) — 0.
(L-smoothness implies f and V f are continuous.)

As we show next, we can establish a rate (speed) guarantee on
f(zr) = f(zs). Namely, we will show

flar) = fz.) < O(/k).

It is also possible to establish a rate guarantee on V f(xx) — 0. It can be
shown that

IV f ()]l < O1/E).

Smooth convex GD
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Convergence rate of GD for smooth convex functions

Theorem.

Let f: R™ — R be L-smooth and convex. Assume f has a minimizer x,.
Consider gradient descent with constant stepsize « = 1/L. Then, for
k=1,2,...,

Flaw) = F@) < oo — 2.

Outline of proof. This proof technique is called an energy function
analysis, potential function analysis, or Lyapunov analysis. The key
insight is to define an appropriate dissipative (non-increasing) quantity.

The main challenge is in identifying the right energy function, which in
some cases is highly non-obvious. (The “energy functions” are often
unrelated to any notion of physical energy.)

Smooth convex GD 29



Proof. Define the energy function
£ = k(F(w) — f(.) + i — P
for kK =0,1,.... If the energy is dissipative, then we conclude
K(F(ee) — £(2)) < 8 < < & = Zllag 2
It remains to show &1 < & for k=0,1,.... We have
Er1 = & = (k+ 1) (f(zp1) — f22) — k(f(x) — f2s)
— LV (@) — )+ SE I @)

< F) ~ @)~ LT @I~ (f ),z — 2 + 57 1V @)
k k
< 5 VT @I~ SELIVF@OIR + g 197 @I =~ IV F @) <0,
where the first inequahty follows from the L-smoothness lemma
(1) £ (501) = (kD (i~ 29 @) < (k1) F )~ S 0 s 2

and the second inequality follows from the cocoercivity inequallty

Flaw) = f(e) ~ (Vi) o — ) <~ V@I o



Projected gradient method

Projected gradient method
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Projected gradient descent

Constrained optimization problem

minimize  f(z),

subject to =z € C,

where C' C R™ is a nonempty closed convex set and f: R” — R is
differentiable. Assume the constraint set C' is computationally easy to
project onto.

Projected gradient descent has the form

Tr+1 = e (QTIC - an(l‘]g))

for k=0,1,..., where xy € R™ is a suitably chosen starting point and
a € R is a positive step size.

In other words, projected GD alternates gradient descent steps and
projections onto C.
Projected gradient method 32



Example: Projection onto /. .-ball

Consider the ¢,.-ball

C={zeR"|||z||oc <1} ={x € R"||z;] <1, fori=1,...,n}.

Then, Il is the thresholding operator

-1 ifz; < -1
(e(x)), = My @) =4 @ if —1<2,<1

applied element-wise for i = 1,...,n.

Since projected GD uses Il every iteration, it is important that
computing IIo is inexpensive.

(It's also nice for humans if the code for Il is easy to implement.)

Projected gradient method
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Example: /,.-constrained logistic regression

Consider the /.-constrained logistic regression problem

N

miwnei%jnize Zl log (1 + exp(v] z))
P

subject to  ||z]le0 <1

for some vy,..., vy € R.

Projected GD is

N
1
Tyl = H(m -« —v-)
k+1 k ; T+ oxp(—vlan) )
where II is the element-wise projection onto [—1,1].
This is quite simple to implement.

Projected gradient method
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Optimality condition for constrained optimization

Recall that in unconstrained optimization, V f(z) = 0 is a necessary
condition for x to be a solution. This is called an optimality condition.
We have an analogous optimality condition for constrained optimization.

Theorem.
Let C' C R™ be a nonempty closed convex set and f: R™ — R be
differentiable. If x, € argmin . f(z), then

(Vf(z),z—2,) >0, VazeC.

Motivation. Imagine we are minimizing a linear objective subject to a
constraint: o
minimize x
inimi (9,2)
subject to z € C.
Then, x, being a solution is defined as

(g,x> > <g,$*>, VreC.

When f is not linear, we expect something similar within a neighborhood.

Projected gradient method

35



Optimality condition for constrained optimization

Theorem.
Let C C R™ be nonempty closed convex and f: R"™ — R be
differentiable. If x, € argmin, .. f(z), then

(Vf(zy),z —a.) >0, VreC.

Projected gradient method
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Optimality condition for constrained optimization

Theorem.
Let C C R™ be nonempty closed convex and f: R"™ — R be
differentiable. If x, € argmin,co f(z), then

<Vf($*)7$—.’l,'*> >0, VaeC.

Proof. Let z € C. If x = z,, there is nothing to prove, so assume
T # x4. Then,
f(x*)gf(x*+9(:vfx*)) vo e (0,1].
~———

=(1-0)x,+0xeC
and (1=6)

0 < lim f@e +0(x —24)) — f(24)
0—0 0

= (Vf(zs),® — 24).

Projected gradient method 37



Optimality condition for constrained optimization

For unconstrained convex optimization, V f(z) = 0 is a necessary
and sufficient condition for optimality. The same pattern holds for
constrained convex optimization.

Theorem.
Let C' C R™ be nonempty closed convex and f: R™ — R be differentiable
and convex. Then, z, € argmin .- f(z) if and only if

(Vf(ze),x —x4) >0, VaeC.

/ ' Xy 'FUV Convex Tuuttions, Woving jn

4 direttion U (infintesiwal or not)
will certainly increate £

Projected gradient method 38



Optimality condition for constrained optimization

Theorem.
Let C' C R™ be nonempty closed convex and f: R™ — R be differentiable
and convex. Then, z, € argmin . f(z) if and only if

(Vf(z),z —24) >0, VzeC.

Proof. It remains to show the direction (<) under the assumption of
convexity. Assume

(Vf(zy),x —xs) >0, VzeC.

By the convexity inequality,

f@) = f(@) +(Vf(@), 2 — )
> f(a:*)7

and we conclude z, is a global minimizer. O

Projected gradient method
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Optimality < stationarity

Theorem.
Let C C R™ be nonempty closed convex and f: R™ — R be differentiable
and convex. Let o > 0. Then, x, € argmin - f(x) if and only if

Ty = Ho(ze — aV f(24)).

l.e., projected GD stops moving if and only if you are at a solution.

Proof. By the optimality condition, x, is a solution if and only if
(Vf(zs),x — xy) >0, Vzedl.
This holds if and only if
(x — zy, 20 — aV f(xy) —x4) <0, VzeC.
By the projection theorem, this holds if and only if
2y = Ho(ze — aV f(24)).

Projected gradient method 40



G-mapping

Let @ > 0. Let C' C R™ be nonempty closed convex and f: R" — R be
differentiable. Define G, : R™ — R such that

Me(z —aVf(z)) =z — aG.(z).

In other words, let

1

«

Galt) = — (2 - To(z — aVf(2)).
With this notation, we can express projected GD as
Tpt1 = xp — aGo(Tk).
We will call G, the G-mapping. In other references, this is called the

“gradient mapping,” but | dislike this terminology because G, is not a
gradient, although it is a generalization of the gradient.

Note, if C = R", then Il¢(z) = z and G, = V.
Projected gradient method
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Descent lemma

First, an intermediate inequality, a consequence of the projection theorem.

Lemma.
Let f: R™ — R be L-smooth and convex. Let C' C R™ be nonempty
closed convex. Let « >0 and x4 = — aGy(x). Then

<Vf($),y - CL’+> > <G04(x)ay - 1’+>.

for any x € R® and y € C.
Proof. By the projection theorem,
(y—z4,x—aVf(z) — (xr — aGa(x))) <0.
~—_———

Reorganizing the terms, we get -

(y =2y, Vf(z) — Galz)) = 0.

Further reorganizing, we get the stated result. O

Projected gradient method
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Descent lemma

Next, we establish our main descent lemma used for the convergence
proof of projected GD.

Lemma.
Let f: R™ — R be L-smooth and convex. Let C' C R™ be nonempty
closed convex. If o € (0,1/L], then

) > (z = aGa(@)) + (Gala)y —2) + 5 |Ga)]”

for any x € R™ and y € C.

This lemma resembles the cocoercivity inequality, but it is not a strict
generalization. (When C'=R" and G,(z) = Vf(z), the resulting
inequality is weaker than the cocoercivity inequality.)

Projected gradient method
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F(9) 2 F(e1) + (Gala)y - 2) + 5| Ga (@)

Proof. By the L-smoothness lemma, convexity of f, and consequence of
the projection theorem, we have

Fles) < J@) + V@) 20— 2) + 5 ey — o
< @)+ (V@) ws — o) + 5 los — ol
= (@) + (Vf(@),y —2) + (Vf(@), 21 = y) + 5] Gala)?
< ()~ (VF()y =) + S Gal@)?
< ) — (Galw)y —21) + SIGa@)IP
= f(y) = (Galw)y — o) - <Ga<x>, - a) + 5 lGa()?

=aGq(z)
= f(y) = (Gal@),y —2) = 5[ Gal@) %

Reorganizing, we get the stated result. O



Bounty!

In my view, the proofs for the cocoercivity inequality and this descent
lemma are opaque.

If you can find a a substantively simpler or intuitive proof for these
inequalities, | will add +20 points (out of 100 points) on the final exam.

Projected gradient method 45



Descent lemma

Plugging o = 1/L, y = xx41, and x = x, into the lemma to get

Flan) < Fla) = 57 |Galwi) |7

This is a guarantee on the improvement from zj, to xy41; the
improvement will be proportional to the squared magnitude of the
movement.

By L-smoothness, the mapping
xp = xp — oV f(zr)
will reduce the function value, but the projection step
r — oV f(zr) = Ho(rr — aVf(zr)) = 2pq1

can and often will increase the function value. The descent property

above assures us that the decrease and increase add up to a decrease.

Projected gradient method
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Convergence of projected GD

Theorem.

Let C C R™ be nonempty closed convex and f: R™ — R be L-smooth
and convex. Assume argmin, . f(x) has a solution. Then projected GD

with constant stepsize o satisfying o € (0,1/L] converges in the sense of
T, — x, for some x, € argmin, o f(x).*

Proof. Let Z, € argmin f and f, = f(#.). Using the descent lemma,
k1 — Z41?
= ||z — aGal(zy) — 2.2
= |lzk — Zl® = 20(Gal@r), 21 — 72) + || Galz) |
<l = 2l? = 20(f(@n1) = fo) = $Galan)l® + 2| Galar)|?
= llox = &l* = 2a(f(za41) = fi) — @ — @) [|Galzr)|
<l = &l* = 2a(f(z41) = f) >0

By the summability lemma, f(zr) — fi. With a subsequence argument,
we can show xj, — . O

It is possible to show convergence for o € (0,2/L) with more work.



Convergence rate of projected GD

Theorem.

Let C C R™ be nonempty closed convex and f: R™ — R be L-smooth
and convex. Assume argmin, .- f(x) has a solution. Consider projected
gradient descent with constant stepsize « = 1/L. Then, fork =1,2,...

far) = f(z,)

< a-lvo — 2.

Proof. Define the energy function

£ = k(f(zx) — F(@) + gl — s P

for k=0,1,.... If the energy is dissipative, then we conclude

kumwﬁm»s&smg&:;m_@w

Projected gradient method
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Convergence rate of projected GD
L
& = k(f(or) = fl@0) + 5 o — .

It remains to show &1 < & for k. =0,1,.... We have

Ehrr — &k = (k+ 1)(f(zrg1) — fl2a)) = k(f(2) — f(24))
0[2
~ aL{Galon), ok — ) + 2 Gzl

k 2 1 2
< - ~ a7 - — Lx rya [eY
< f@rn) = (@) = 5 IGal@n)l? = (Galaw) ok = 2.) + 5 ||Galwn)]
1 k 1 k
< _ > 2 K 2, L 2_ _ Rk 2 o
<~ Ga@r)I? = S IGa(@n) I + 5 |Gz IP = = o= | Gal@n)P 0,
where the first inequality follows from the descent lemma

B i) < B @) — 5o |Caleo)l?

and the second inequality also follows from the descent lemma

1
Feren) = f@e) = (Galan) x = 2.) < — 2 IGa(@a)l® 4
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