Chapter 1: Gradient Descent

Ernest K. Ryu

MATH 164: Optimization University of California, Los Angeles Department of Mathematics

Last edited: February 7, 2025

Gradient descent

Consider the optimization problem

$$\underset{x \in \mathbb{R}^n}{\operatorname{minimize}} \quad f(x),$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable.¹

Gradient descent (GD) has the form

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

for $k=0,1,\ldots$, where $x_0\in\mathbb{R}^n$ is a suitably chosen starting point and $\alpha_0,\alpha_1,\ldots\in\mathbb{R}$ is a positive step size sequence.

Under suitable conditions, we hope $x_k \stackrel{?}{\to} x_{\star}$ for some solution x_{\star} .

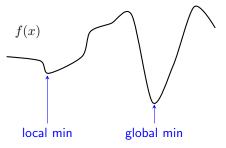
 $^{{}^{1}}$ If f is not differentiable, then gradient descent is not well defined, right?

Local vs. global minima

 x_\star is a local minimum if $f(x) \geq f(x_\star)$ within a small neighborhood.²

 x_{\star} is a global minimum if $f(x) \geq f(x_{\star})$ for all $x \in \mathbb{R}^n$

In the worst case, finding the global minimum of an optimization problem is difficult. (The class of non-convex optimization problems is NP-hard.)



²if $\exists r > 0$ s.t. $\forall x$ s.t. $||x - x_{\star}|| \le r \Rightarrow f(x) \ge f(x_{\star})$

What can we prove?

Without further assumptions, there is no hope of showing that GD finds the global minimum since GD can never "know" if it is stuck in a local minimum.

We cannot prove the function value converges to the global optimum. We instead prove $\nabla f(x_k) \to 0$. Roughly speaking, this is similar but weaker than proving that x_k converges to a local minimum.³

 $^{^3}$ Without further assumptions, we cannot show that x_k converges to a limit, and even x_k does converge to a limit, we cannot guarantee that that limit is not a saddle point or even a local maximum. Nevertheless, people commonly use the argument that x_k "usually" converges and that it is "unlikely" that the limit is a local maximum or a saddle point. More on this later.

$-\nabla f$ is steepest descent direction

From vector calculus, we know that ∇f is the steepest ascent direction, so $-\nabla f$ is the steepest descent direction. In other words,

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

is moving in the steepest descent direction, which is $-\nabla f(x_k)$ at the current position x_k , scaled by $\alpha_k > 0$.

Taylor expansion of f about x_k

$$f(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \mathcal{O}(\|x - x_k\|^2).$$

Plugging in x_{k+1}

$$f(x_{k+1}) = f(x_k) - \alpha_k ||\nabla f(x_k)||^2 + \mathcal{O}(\alpha_k^2).$$

For small (cautious) α_k , a GD step reduces function value.

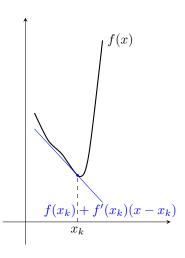
Is GD a "descent method"?

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

Without further assumptions, $-\nabla f(x_k)$ only provides directional information. How far should you go? How large should α_k be?

A step of GD need not result in descent, i.e., $f(x_{k+1}) > f(x_k)$ is possible.

Calculus only guarantees the accuracy of the Taylor expansion in an infinitesimal neighborhood.



Step size selection for GD

How do we choose the step size α_k and ensure convergence?

We consider 3 solutions:

- Make an assumption allowing us to choose α_k and ensures $f(x_k)$ will descend.
 - Estimate the L needed to choose α_k .
- ▶ Do a line search to ensure that $f(x_k)$ will descend.
- ▶ Drop the insistence that $f(x_k)$ must consistently go down.

Outline

Smooth non-convex GD

Smooth convex GD

Projected gradient method

GD for smooth non-convex functions

Consider the optimization problem

$$\underset{x \in \mathbb{R}^n}{\mathsf{minimize}} \quad f(x),$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is "L-smooth" (but not necessarily convex).

We consider GD with constant step size:

$$x_{k+1} = x_k - \alpha \nabla f(x_k).$$

(So
$$\alpha = \alpha_0 = \alpha_1 = \cdots$$
.)

We will show the following.

Theorem.

Assume $f: \mathbb{R}^n \to \mathbb{R}$ is L-smooth and $\inf f > -\infty$. Let $\alpha \in (0, 2/L)$. Then, the GD iterates satisfy $\nabla f(x_k) \to 0$.

L-smoothness

For L>0, we say $f\colon \mathbb{R}^n\to\mathbb{R}$ is L-smooth if f is differentiable and

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$

I.e., $\nabla f \colon \mathbb{R}^n \to \mathbb{R}^n$ is L-Lipschitz continuous. We say f is smooth if it is L-smooth for some L>0.

Interpretation 1: ∇f does not change too rapidly. This makes the first-order Taylor expansion reliable beyond an infinitesimal neighborhood. (Further quantified on next slide.)

If f twice-continuously differentiable, then L-smoothness is equivalent to

$$-L \le \lambda_{\min}(\nabla^2 f(x)) \le \lambda_{\max}(\nabla^2 f(x)) \le L, \quad \forall x \in \mathbb{R}^n.$$

Interpretation 2: The curvature f, quantified by $\nabla^2 f$, has lower and upper bounds $\pm L$.

The name "smoothness", as used in optimization, is somewhat confusing because in other areas of mathematics, "smoothness" often refers to infinite differentiability.

$\textbf{Smoothness} \Rightarrow \textbf{first-order Taylor has small remainder}$

For GD to work with a fixed non-adaptive step size, we need assurance that the first-order Taylor expansion is a good approximation within a sufficiently large neighborhood. *L*-smoothness provides this assurance.

Lemma.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth. Then

$$|f(x+\delta) - (f(x) + \langle \nabla f(x), \delta \rangle)| \le \frac{L}{2} ||\delta||^2, \quad \forall x, \delta \in \mathbb{R}^n.$$

Note

$$R_1(\delta; x) = f(x + \delta) - (f(x) + \langle \nabla f(x), \delta \rangle)$$

is the remainder between f and its first-order Taylor expansion about x. This lemma provides a quantitative bound $|R_1(\delta;x)| \leq \mathcal{O}(\|\delta\|^2)$.

L-smoothness lower and upper bounds

The claimed inequality

$$|f(x+\delta) - (f(x) + \langle \nabla f(x), \delta \rangle)| \le \frac{L}{2} ||\delta||^2$$

is equivalent to

$$f(x) + \langle \nabla f(x), \delta \rangle - \frac{L}{2} \|\delta\|^2 \le f(x+\delta) \le f(x) + \langle \nabla f(x), \delta \rangle + \frac{L}{2} \|\delta\|^2.$$

We will only prove the upper bound \leq . The lower bound \leq follows from the same reasoning with some sign changes. (Also, we only use \leq .)

Proof of the upper bound \leq . Define $g: \mathbb{R} \to \mathbb{R}$ by

$$g(t) = f(x + t \delta).$$

Then g is differentiable, and its derivative is

$$g'(t) = \langle \nabla f(x + t \delta), \delta \rangle.$$

Next, observe that g' is $(L\|\delta\|^2)$ -Lipschitz continuous. Indeed,

$$|g'(t_1) - g'(t_0)| = |\langle \nabla f(x + t_1 \delta) - \nabla f(x + t_0 \delta), \delta \rangle|$$

$$\leq ||\nabla f(x + t_1 \delta) - \nabla f(x + t_0 \delta)|| ||\delta|| \leq L ||\delta||^2 |t_1 - t_0|.$$

Finally, we conclude that

$$f(x+\delta) = g(1) = g(0) + \int_0^1 g'(t) dt$$

$$\leq f(x) + \int_0^1 (g'(0) + L \|\delta\|^2 t) dt$$

$$= f(x) + \langle \nabla f(x), \delta \rangle + \frac{L}{2} \|\delta\|^2.$$

Summability lemma

Lemma.

Let $V_0,V_1,\ldots\in\mathbb{R}$ and $S_0,S_1,\ldots\in\mathbb{R}$ be nonnegative sequences satisfying

$$V_{k+1} \leq V_k - S_k$$

for $k = 0, 1, \ldots$ Then $S_k \to 0$.

Key idea. S_k measures progress (decrease) made in iteration k. Since $V_k \geq 0$, V_k cannot decrease forever, so the progress (magnitude of S_k) must diminish to 0.

Proof. Sum the inequality from i = 0 to k

$$V_{k+1} + \sum_{i=0}^{k} S_i \le V_0.$$

Let $k \to \infty$

$$\sum_{i=0}^{\infty} S_i \le V_0 - \lim_{k \to \infty} V_k \le V_0$$

Since $\sum_{i=0}^{\infty} S_i < \infty$, we conclude $S_i \to 0$.

Convergence proof for smooth non-convex functions

Theorem.

Assume $f: \mathbb{R}^n \to \mathbb{R}$ is L-smooth and $\inf f > -\infty$. Let $\alpha \in (0, 2/L)$. Then, the GD iterates satisfy $\nabla f(x_k) \to 0$.

Proof. Use the Lipschitz gradient lemma with $x=x_k$ and $\delta=-\alpha\nabla f(x_k)$ to obtain

$$f(x_{k+1}) \le f(x_k) - \alpha \left(1 - \frac{\alpha L}{2}\right) \|\nabla f(x_k)\|^2,$$

and

$$\underbrace{\left(f(x_{k+1}) - \inf_{x} f(x)\right)}^{\operatorname{def} V_{k+1}} \leq \underbrace{\left(f(x_{k}) - \inf_{x} f(x)\right)}_{\operatorname{constant}} - \underbrace{\frac{\operatorname{def} S_{k}}{\operatorname{def} S_{k}}}_{\operatorname{sol}} \|\nabla f(x_{k})\|^{2}.$$

By the summability lemma, we have $\|\nabla f(x_k)\|^2 \to 0$ and thus $\nabla f(x_k) \to 0$.

GD experiments and curvature

GD with line search

Consider

$$\underset{x \in \mathbb{R}^n}{\mathsf{minimize}} \quad f(x),$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable but not necessarily smooth.

GD with exact line search

$$g_k = \nabla f(x_k)$$

$$\alpha_k \in \underset{\alpha \in \mathbb{R}}{\operatorname{argmin}} f(x_k - \alpha g_k)$$

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

performs a one-dimensional search in the direction of the gradient.

Theorem.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. Then GD with exact line search satisfies

$$f(x_k) \setminus f_{\infty} \in [-\infty, \infty).$$

Proof. By construction, we have $f(x_{k+1}) \leq f(x_k)$. A non-increasing sequence of real numbers converges to a value in $[-\infty,\infty)$.

GD with inexact line search

Computing the exact line search is often expensive and unnecessary.

GD with inexact line search

$$g_k = \nabla f(x_k)$$

$$\alpha_k = \mathsf{InexLineSearch}(f, x_k, g_k)$$

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

$$\begin{split} & \operatorname{InexLineSearch}(f,x,g): \\ & \alpha \leftarrow \beta \quad // \text{ some initial constant } > 0 \\ & \text{if } g == 0: \text{ return } \alpha \\ & \text{while } f(x - \alpha g) \geq f(x) \\ & \alpha \leftarrow \alpha/2 \\ & \text{return } \alpha \end{split}$$

This inexact line search is also called a backtracking line search.

Theorem.

If f is differentiable, the line search terminates in finite steps.

Proof. Since f is differentiable,

$$f(x - \alpha g) = f(x) - \alpha ||g||^2 + o(\alpha)$$

and there is a threshold A>0 such that $f(x-\alpha g)< f(x)$ for $\alpha\in(0,A)$. The halving process of α eventually results in $f(x-\alpha g)< f(x)$ (by coincidence) or enters the interval $\alpha\in(0,A)$.

GD with inexact line search

The starting step size $\beta > 0$ is a parameter to be tuned.

With large β , we have to perform the backtracking loop many times, but we have the opportunity to take a long step.

With small β , the backtracking loop may terminate more quickly, but we won't take steps larger than β .

One can modify the algorithm to adaptively decrease or increase β based on the history of backtracking.

How to choose the starting point x_0

Most (if not all) optimization algorithms require a starting point x_0 . It is optimal to choose x_0 to be close (or equal to) x_* , but, of course, we don't know where x_* is.

If one has an estimate of x_{\star} based on problem structure, should utilize it.

In convex optimization problems, we often have convergence to the global minimum regardless of x_0 , so it is okay to choose $x_0=0$.

For non-convex optimization problems, the general prescription is to start with $x_0 = \text{random noise}$.

In some non-convex optimization problems (such as training deep neural networks), one must not use $x_0=0$, and a well-tuned random initialization is crucial.

Outline

Smooth non-convex GD

Smooth convex GD

Projected gradient method

Convex optimization

The problem

$$\underset{x \in \mathbb{R}^n}{\operatorname{minimize}} \quad f(x)$$

is a *convex optimization* problem if $f: \mathbb{R}^n \to \mathbb{R}$ is convex, i.e., if

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad \forall x, y \in \mathbb{R}^n, \ \theta \in [0, 1].$$

Finding the global minimum of a convex function is tractable.

"In fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

— R. Tyrrell Rockafellar, in SIAM Review, 1993

(In other areas of mathematics, linear things tend to be easier, while nonlinear things tend to be significantly harder, but not in optimization.)

$-\nabla f$ points toward x_{\star}

Why can GD find global minimizers of convex functions?

Reason 1. Moving in the $-\nabla f$ direction reduces the function value, taking you to a local minimum, which is a global minimum by convexity.

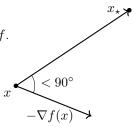
Reason 2. The $-\nabla f$ direction points toward global minimizers. (This is the more fundamental reason.)

Theorem.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable and convex. Assume f has a minimizer and let $x_* \in \operatorname{argmin} f$.

Let $x \in \mathbb{R}^n$ such that $\nabla f(x) \neq 0$. Then,

$$\langle x_{\star} - x, -\nabla f(x) \rangle > 0.$$



Smooth convex GD

$-\nabla f$ points toward x_{\star}

Theorem.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable and convex. Assume f has a minimizer and let $x_\star \in \operatorname{argmin} f$. Let $x \in \mathbb{R}^n$ such that $\nabla f(x) \neq 0$. Then,

$$\langle x_{\star} - x, -\nabla f(x) \rangle > 0.$$

Proof. Note that x is not a local or global minimizer since $\nabla f(x) \neq 0$. So, $f(x) - f(x_\star) > 0$. By the convexity inequality, we conclude

$$\langle x_{\star} - x, -\nabla f(x) \rangle \ge f(x) - f(x_{\star}) > 0.$$

Consequence: For small α_k , a GD step reduces the distance to a solution.

$$\|\underbrace{x_k - \alpha_k \nabla f(x_k)}_{=x_{k+1}} - x_{\star}\|^2 = \|x_k - x_{\star}\|^2 - 2\alpha_k \underbrace{\langle x_k - x_{\star}, \nabla f(x_k) \rangle}_{>0} + \alpha_k^2 \|\nabla f(x_k)\|^2$$

$$< \|x_k - x_{\star}\|^2$$

for sufficiently small $\alpha_k > 0$, if $\nabla f(x_k) \neq 0$.

We quickly establish an inequality we need for the subsequent proof.

Lemma.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth and convex. Let $x_\star \in \operatorname{argmin} f$ be a minimizer. Then

$$\langle \nabla f(x), x - x_{\star} \rangle \ge \frac{1}{L} \|\nabla f(x)\|^2$$

Proof. Note, $\nabla f(x_{\star}) = 0$. By the cocoercivity inequality, we have

$$f(x_{\star}) \ge f(x) + \langle \nabla f(x), x_{\star} - x \rangle + \frac{1}{2L} \|\nabla f(x)\|^2$$

and

$$f(x) \ge f(x_{\star}) + \frac{1}{2L} \|\nabla f(x)\|^2.$$

Adding these two inequalities yield the stated result.

Theorem.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth and convex. Assume f has a minimizer. Then GD with constant stepsize α satisfying $\alpha \in (0, 2/L)$ converges in the sense of $x_k \to x_\star$ for some $x_\star \in \operatorname{argmin} f$.

Proof. Let $\tilde{x}_{\star} \in \operatorname{argmin} f$. Using the cocoercivity inequality,

$$||x_{k+1} - \tilde{x}_{\star}||^{2} = ||x_{k} - \tilde{x}_{\star} - \alpha \nabla f(x_{k})||^{2}$$

$$= ||x_{k} - \tilde{x}_{\star}||^{2} - 2\alpha \langle \nabla f(x_{k}), x_{k} - \tilde{x}_{\star} \rangle + \alpha^{2} ||\nabla f(x_{k})||^{2}$$

$$\leq ||x_{k} - \tilde{x}_{\star}||^{2} - \frac{2\alpha}{L} ||\nabla f(x_{k})||^{2} + \alpha^{2} ||\nabla f(x_{k})||^{2}$$

$$= ||x_{k} - \tilde{x}_{\star}||^{2} - \underbrace{\alpha \left(\frac{2}{L} - \alpha\right)}_{>0} ||\nabla f(x_{k})||^{2}.$$

By the summability lemma, $\nabla f(x_k) \to 0$.

The proof of $x_k \to x_\star$ for some $x_\star \in \operatorname{argmin} f$ is analysis-heavy, and it somewhat exceeds the scope of this class. Nevertheless, we show it for the sake of completeness.

Ву,

$$||x_{k+1} - \tilde{x}_{\star}||^2 \le ||x_k - \tilde{x}_{\star}||^2 \tag{1}$$

 $\|x_k - \tilde{x}_\star\|^2$ is a decreasing sequence and thus has a limit, but the limit is not necessarily 0 (especially if the minimizer is not unique). We argue that $x_k \to x_\star$ for some $x_\star \in \operatorname{argmin} f$ with the steps: (i) x_k has an accumulation point (ii) this accumulation point is a minimizer (iii) this is the only accumulation point.

- (i) Inequality (1) tells us $\{x_k\}_k$ lie within $\{x \mid ||x \tilde{x}^*|| \le ||x_0 \tilde{x}^*||\}$, a compact set, so $\{x_k\}_k$ has an accumulation point x_* .
- (ii) Accumulation point x_\star satisfies $\nabla f(x_\star) = 0$, as $\nabla f(x_k) \to \text{and } \nabla f$ is continuous, i.e., $x_\star \in \operatorname{argmin} f$.
- (iii) Apply (1) to this accumulation point $x_{\star} \in \operatorname{argmin} f$ (i.e., plug in $\tilde{x}_{\star} = x_{\star}$) to conclude $\|x_k x_{\star}\|$ monotonically decreases to 0, i.e., the entire sequence converges to x_{\star} .

Note, $x_k \to x_\star$ immediately implies $f(x_k) \to f(x_\star)$ and $\nabla f(x_k) \to 0$. (*L*-smoothness implies f and ∇f are continuous.)

As we show next, we can establish a rate (speed) guarantee on $f(x_k) \to f(x_\star)$. Namely, we will show

$$f(x_k) - f(x_\star) \le \mathcal{O}(1/k).$$

It is also possible to establish a rate guarantee on $\nabla f(x_k) \to 0$. It can be shown that

$$\|\nabla f(x_k)\| \le \mathcal{O}(1/k).$$

Smooth convex GD

28

Theorem.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth and convex. Assume f has a minimizer x_\star . Consider gradient descent with constant stepsize $\alpha = 1/L$. Then, for $k = 1, 2, \ldots$,

$$f(x_k) - f(x_\star) \le \frac{L}{2k} ||x_0 - x_\star||^2.$$

Outline of proof. This proof technique is called an *energy function* analysis, *potential function* analysis, or *Lyapunov analysis*. The key insight is to define an appropriate dissipative (non-increasing) quantity.

The main challenge is in identifying the right energy function, which in some cases is highly non-obvious. (The "energy functions" are often unrelated to any notion of physical energy.)

Smooth convex GD

Proof. Define the energy function

$$\mathcal{E}_k = k(f(x_k) - f(x_{\star})) + \frac{L}{2} ||x_k - x_{\star}||^2$$

for $k = 0, 1, \ldots$ If the energy is dissipative, then we conclude

$$k(f(x_k) - f(x_\star)) \le \mathcal{E}_k \le \dots \le \mathcal{E}_0 = \frac{L}{2} ||x_0 - x_\star||^2.$$

It remains to show $\mathcal{E}_{k+1} \leq \mathcal{E}_k$ for $k = 0, 1, \ldots$ We have

$$\mathcal{E}_{k+1} - \mathcal{E}_k = (k+1)(f(x_{k+1}) - f(x_{\star})) - k(f(x_k) - f(x_{\star}))$$

$$-\alpha L \langle \nabla f(x_k), x_k - x_{\star} \rangle + \frac{\alpha^2 L}{2} \| \nabla f(x_k) \|^2$$

$$\leq f(x_k) - f(x_{\star}) - \frac{k+1}{2L} \| \nabla f(x_k) \|^2 - \langle \nabla f(x_k), x_k - x_{\star} \rangle + \frac{1}{2L} \| \nabla f(x_k) \|^2$$

$$\leq f(x_k) - f(x_{\star}) - \frac{k+1}{2L} \|\nabla f(x_k)\|^2 - \langle \nabla f(x_k), x_k - x_{\star} \rangle + \frac{1}{2L} \|\nabla f(x_k)\|^2$$

$$\leq -\frac{1}{2L} \|\nabla f(x_k)\|^2 - \frac{k+1}{2L} \|\nabla f(x_k)\|^2 + \frac{1}{2L} \|\nabla f(x_k)\|^2 = -\frac{k}{2L} \|\nabla f(x_k)\|^2 \leq 0,$$

where the first inequality follows from the
$$L$$
-smoothness lemma

where the first inequality follows from the L-smoothness lemma

$$(k+1)f(x_{k+1}) = (k+1)f(x_k - \frac{1}{L}\nabla f(x_k)) \le (k+1)f(x_k) - \frac{(k+1)}{2L} \|\nabla f(x_k)\|^2$$

and the second inequality follows from the cocoercivity inequality

$$f(x_k) - f(x_{\star}) - \langle \nabla f(x_k), x_k - x_{\star} \rangle \le -\frac{1}{2L} \| \nabla f(x_k) \|^2.$$

Outline

Smooth non-convex GD

Smooth convex GD

Projected gradient method

Projected gradient descent

Constrained optimization problem

where $C \subset \mathbb{R}^n$ is a nonempty closed convex set and $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable. Assume the constraint set C is computationally easy to project onto.

Projected gradient descent has the form

$$x_{k+1} = \Pi_C (x_k - \alpha \nabla f(x_k))$$

for $k=0,1,\ldots$, where $x_0\in\mathbb{R}^n$ is a suitably chosen starting point and $\alpha\in\mathbb{R}$ is a positive step size.

In other words, projected GD alternates gradient descent steps and projections onto ${\cal C}.$

Example: Projection onto ℓ_{∞} -ball

Consider the ℓ_{∞} -ball

$$C = \{x \in \mathbb{R}^n \mid ||x||_{\infty} \le 1\} = \{x \in \mathbb{R}^n \mid |x_i| \le 1, \text{ for } i = 1, \dots, n\}.$$

Then, Π_C is the thresholding operator

$$(\Pi_C(x))_i = \Pi_{[-1,1]}(x_i) = \begin{cases} -1 & \text{if } x_i < -1 \\ x_i & \text{if } -1 \le x_i \le 1 \\ +1 & \text{if } 1 < x_i \end{cases}$$

applied element-wise for $i = 1, \ldots, n$.

Since projected GD uses Π_C every iteration, it is important that computing Π_C is inexpensive.

(It's also nice for humans if the code for Π_C is easy to implement.)

Example: ℓ_{∞} -constrained logistic regression

Consider the ℓ_{∞} -constrained logistic regression problem

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & \sum_{i=1}^N \log \left(1 + \exp(v_i^\mathsf{T} x)\right) \\ \text{subject to} & \|x\|_\infty \leq 1 \end{array}$$

for some $v_1, \ldots, v_N \in \mathbb{R}$.

Projected GD is

$$x_{k+1} = \Pi \Big(x_k - \alpha \sum_{i=1}^N \frac{1}{1 + \exp(-v_i^{\mathsf{T}} x_k)} v_i \Big),$$

where Π is the element-wise projection onto [-1,1].

This is quite simple to implement.

Optimality condition for constrained optimization

Recall that in unconstrained optimization, $\nabla f(x)=0$ is a necessary condition for x to be a solution. This is called an *optimality condition*. We have an analogous optimality condition for constrained optimization.

Theorem.

Let $C \subset \mathbb{R}^n$ be a nonempty closed convex set and $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable. If $x_{\star} \in \operatorname{argmin}_{x \in C} f(x)$, then

$$\langle \nabla f(x_{\star}), x - x_{\star} \rangle \ge 0, \quad \forall x \in C.$$

Motivation. Imagine we are minimizing a linear objective subject to a constraint:

Then, x_{\star} being a solution is defined as

$$\langle g, x \rangle \ge \langle g, x_{\star} \rangle, \quad \forall x \in C.$$

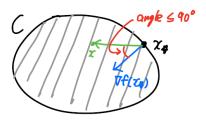
When f is not linear, we expect something similar within a neighborhood.

Optimality condition for constrained optimization

Theorem.

Let $C \subset \mathbb{R}^n$ be nonempty closed convex and $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable. If $x_{\star} \in \operatorname{argmin}_{x \in C} f(x)$, then

$$\langle \nabla f(x_{\star}), x - x_{\star} \rangle \ge 0, \quad \forall x \in C.$$



Optimality condition for constrained optimization

Theorem.

Let $C \subset \mathbb{R}^n$ be nonempty closed convex and $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable. If $x_{\star} \in \operatorname{argmin}_{x \in C} f(x)$, then

$$\langle \nabla f(x_{\star}), x - x_{\star} \rangle \ge 0, \quad \forall x \in C.$$

Proof. Let $x \in C$. If $x = x_{\star}$, there is nothing to prove, so assume $x \neq x_{\star}$. Then,

$$f(x_{\star}) \le f\left(\underbrace{x_{\star} + \theta(x - x_{\star})}_{=(1-\theta)x_{\star} + \theta x \in C}\right) \quad \forall \theta \in (0, 1].$$

and

$$0 \le \lim_{\theta \to 0} \frac{f(x_{\star} + \theta(x - x_{\star})) - f(x_{\star})}{\theta} = \langle \nabla f(x_{\star}), x - x_{\star} \rangle.$$

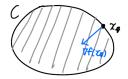
Optimality condition for constrained optimization

For unconstrained convex optimization, $\nabla f(x)=0$ is a necessary and sufficient condition for optimality. The same pattern holds for constrained convex optimization.

Theorem.

Let $C \subset \mathbb{R}^n$ be nonempty closed convex and $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable and convex. Then, $x_* \in \operatorname{argmin}_{x \in C} f(x)$ if and only if

$$\langle \nabla f(x_{\star}), x - x_{\star} \rangle \ge 0, \quad \forall x \in C.$$



for convex functions, moving in direction ∇f (infinitesimal or not) will certainly increase f

Optimality condition for constrained optimization

Theorem.

Let $C \subset \mathbb{R}^n$ be nonempty closed convex and $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable and convex. Then, $x_* \in \operatorname{argmin}_{x \in C} f(x)$ if and only if

$$\langle \nabla f(x_{\star}), x - x_{\star} \rangle \ge 0, \quad \forall x \in C.$$

Proof. It remains to show the direction (\Leftarrow) under the assumption of convexity. Assume

$$\langle \nabla f(x_{\star}), x - x_{\star} \rangle \ge 0, \quad \forall x \in C.$$

By the convexity inequality,

$$f(x) \ge f(x_{\star}) + \langle \nabla f(x_{\star}), x - x_{\star} \rangle$$

$$\ge f(x_{\star}),$$

and we conclude x_{\star} is a global minimizer.

Optimality \Leftrightarrow **stationarity**

Theorem.

Let $C \subset \mathbb{R}^n$ be nonempty closed convex and $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable and convex. Let $\alpha > 0$. Then, $x_\star \in \operatorname{argmin}_{x \in C} f(x)$ if and only if

$$x_{\star} = \Pi_C(x_{\star} - \alpha \nabla f(x_{\star})).$$

I.e., projected GD stops moving if and only if you are at a solution.

Proof. By the optimality condition, x_{\star} is a solution if and only if

$$\langle \nabla f(x_{\star}), x - x_{\star} \rangle \ge 0, \quad \forall x \in C.$$

This holds if and only if

$$\langle x - x_{\star}, x_{\star} - \alpha \nabla f(x_{\star}) - x_{\star} \rangle \le 0, \quad \forall x \in C.$$

By the projection theorem, this holds if and only if

$$x_{\star} = \Pi_C(x_{\star} - \alpha \nabla f(x_{\star})).$$

G-mapping

Let $\alpha>0$. Let $C\subset\mathbb{R}^n$ be nonempty closed convex and $f\colon\mathbb{R}^n\to\mathbb{R}$ be differentiable. Define $G_\alpha\colon\mathbb{R}^n\to\mathbb{R}$ such that

$$\Pi_C(x - \alpha \nabla f(x)) = x - \alpha G_\alpha(x).$$

In other words, let

$$G_{\alpha}(x) = \frac{1}{\alpha} (x - \Pi_C(x - \alpha \nabla f(x))).$$

With this notation, we can express projected GD as

$$x_{k+1} = x_k - \alpha G_\alpha(x_k).$$

We will call G_{α} the *G-mapping*. In other references, this is called the "gradient mapping," but I dislike this terminology because G_{α} is not a gradient, although it is a generalization of the gradient.

Note, if
$$C = \mathbb{R}^n$$
, then $\Pi_C(x) = x$ and $G_\alpha = \nabla f$.

Descent lemma

First, an intermediate inequality, a consequence of the projection theorem.

Lemma.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth and convex. Let $C \subset \mathbb{R}^n$ be nonempty closed convex. Let $\alpha > 0$ and $x_+ = x - \alpha G_{\alpha}(x)$. Then

$$\langle \nabla f(x), y - x_+ \rangle \ge \langle G_{\alpha}(x), y - x_+ \rangle.$$

for any $x \in \mathbb{R}^n$ and $y \in C$.

Proof. By the projection theorem,

$$\langle y - x_+, x - \alpha \nabla f(x) - \underbrace{(x - \alpha G_{\alpha}(x))}_{=x_+} \rangle \le 0.$$

Reorganizing the terms, we get

$$\langle y - x_+, \nabla f(x) - G_{\alpha}(x) \rangle \ge 0.$$

Further reorganizing, we get the stated result.

Descent lemma

Next, we establish our main descent lemma used for the convergence proof of projected GD.

Lemma.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth and convex. Let $C \subset \mathbb{R}^n$ be nonempty closed convex. If $\alpha \in (0, 1/L]$, then

$$f(y) \ge f(\underbrace{x - \alpha G_{\alpha}(x)}_{=x_{+}}) + \langle G_{\alpha}(x), y - x \rangle + \frac{\alpha}{2} \|G_{\alpha}(x)\|^{2}$$

for any $x \in \mathbb{R}^n$ and $y \in C$.

This lemma resembles the cocoercivity inequality, but it is not a strict generalization. (When $C=\mathbb{R}^n$ and $G_\alpha(x)=\nabla f(x)$, the resulting inequality is weaker than the cocoercivity inequality.)

$$f(y) \ge f(x_+) + \langle G_{\alpha}(x), y - x \rangle + \frac{\alpha}{2} ||G_{\alpha}(x)||^2$$

Proof. By the L-smoothness lemma, convexity of f, and consequence of the projection theorem, we have

$$f(x_{+}) \leq f(x) + \langle \nabla f(x), x_{+} - x \rangle + \frac{L}{2} \|x_{+} - x\|^{2}$$

$$\leq f(x) + \langle \nabla f(x), x_{+} - x \rangle + \frac{1}{2\alpha} \|x_{+} - x\|^{2}$$

$$= f(x) + \langle \nabla f(x), y - x \rangle + \langle \nabla f(x), x_{+} - y \rangle + \frac{\alpha}{2} \|G_{\alpha}(x)\|^{2}$$

$$\leq f(y) - \langle \nabla f(x), y - x_{+} \rangle + \frac{\alpha}{2} \|G_{\alpha}(x)\|^{2}$$

$$\leq f(y) - \langle G_{\alpha}(x), y - x_{+} \rangle + \frac{\alpha}{2} \|G_{\alpha}(x)\|^{2}$$

$$= f(y) - \langle G_{\alpha}(x), y - x \rangle - \langle G_{\alpha}(x), \underbrace{x - x_{+}}_{=\alpha G_{\alpha}(x)} \rangle + \frac{\alpha}{2} \|G_{\alpha}(x)\|^{2}$$

$$= f(y) - \langle G_{\alpha}(x), y - x \rangle - \frac{\alpha}{2} \|G_{\alpha}(x)\|^{2}.$$

Reorganizing, we get the stated result.

Bounty!

In my view, the proofs for the cocoercivity inequality and this descent lemma are opaque.

If you can find a substantively simpler or intuitive proof for these inequalities, I will add +20 points (out of 100 points) on the final exam.

Descent lemma

Plugging $\alpha = 1/L$, $y = x_{k+1}$, and $x = x_k$ into the lemma to get

$$f(x_{k+1}) \le f(x_k) - \frac{1}{2L} ||G_{\alpha}(x_k)||^2.$$

This is a guarantee on the improvement from x_k to x_{k+1} ; the improvement will be proportional to the squared magnitude of the movement.

By L-smoothness, the mapping

$$x_k \mapsto x_k - \alpha \nabla f(x_k)$$

will reduce the function value, but the projection step

$$x_k - \alpha \nabla f(x_k) \mapsto \Pi_C(x_k - \alpha \nabla f(x_k)) = x_{k+1}$$

can and often will increase the function value. The descent property above assures us that the decrease and increase add up to a decrease.

Convergence of projected GD

Theorem.

Let $C \subset \mathbb{R}^n$ be nonempty closed convex and $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth and convex. Assume $\mathop{\rm argmin}_{x \in C} f(x)$ has a solution. Then projected GD with constant stepsize α satisfying $\alpha \in (0, 1/L]$ converges in the sense of $x_k \to x_\star$ for some $x_\star \in \mathop{\rm argmin}_{x \in C} f(x)$.

Proof. Let $\tilde{x}_{\star} \in \operatorname{argmin} f$ and $f_{\star} = f(\tilde{x}_{\star})$. Using the descent lemma,

$$\begin{aligned} &\|x_{k+1} - \tilde{x}_{\star}\|^{2} \\ &= \|x_{k} - \alpha G_{\alpha}(x_{k}) - \tilde{x}_{\star}\|^{2} \\ &= \|x_{k} - \tilde{x}_{\star}\|^{2} - 2\alpha \langle G_{\alpha}(x_{k}), x_{k} - \tilde{x}_{\star} \rangle + \alpha^{2} \|G_{\alpha}(x_{k})\|^{2} \\ &\leq \|x_{k} - \tilde{x}_{\star}\|^{2} - 2\alpha (f(x_{k+1}) - f_{\star}) - \frac{\alpha}{L} \|G_{\alpha}(x_{k})\|^{2} + \alpha^{2} \|G_{\alpha}(x_{k})\|^{2} \\ &= \|x_{k} - \tilde{x}_{\star}\|^{2} - 2\alpha (f(x_{k+1}) - f_{\star}) - \underbrace{\alpha (\frac{1}{L} - \alpha)}_{\geq 0} \|G_{\alpha}(x_{k})\|^{2} \\ &\leq \|x_{k} - \tilde{x}_{\star}\|^{2} - 2\alpha (f(x_{k+1}) - f_{\star}) \xrightarrow{\geq 0} \end{aligned}$$

By the summability lemma, $f(x_k) \to f_{\star}$. With a subsequence argument, we can show $x_k \to x_{\star}$.

 $^{^4}$ It is possible to show convergence for $\alpha \in (0,2/L)$ with more work.

Convergence rate of projected GD

Theorem.

Let $C \subset \mathbb{R}^n$ be nonempty closed convex and $f \colon \mathbb{R}^n \to \mathbb{R}$ be L-smooth and convex. Assume $\operatorname{argmin}_{x \in C} f(x)$ has a solution. Consider projected gradient descent with constant stepsize $\alpha = 1/L$. Then, for $k = 1, 2, \ldots$,

$$f(x_k) - f(x_\star) \le \frac{L}{2k} ||x_0 - x_\star||^2.$$

Proof. Define the energy function

$$\mathcal{E}_{k} = k (f(x_{k}) - f(x_{\star})) + \frac{L}{2} ||x_{k} - x_{\star}||^{2}$$

for $k=0,1,\ldots$ If the energy is dissipative, then we conclude

$$k(f(x_k) - f(x_{\star})) \le \mathcal{E}_k \le \dots \le \mathcal{E}_0 = \frac{L}{2} ||x_0 - x_{\star}||^2.$$

Convergence rate of projected GD

$$\mathcal{E}_k = k(f(x_k) - f(x_{\star})) + \frac{L}{2} ||x_k - x_{\star}||^2$$

It remains to show $\mathcal{E}_{k+1} \leq \mathcal{E}_k$ for $k = 0, 1, \ldots$ We have

$$\mathcal{E}_{k+1} - \mathcal{E}_k = (k+1) \left(f(x_{k+1}) - f(x_{\star}) \right) - k \left(f(x_k) - f(x_{\star}) \right)$$
$$- \alpha L \left\langle G_{\alpha}(x_k), x_k - x_{\star} \right\rangle + \frac{\alpha^2 L}{2} \|G_{\alpha}(x_k)\|_{\mathcal{E}_{\alpha}}$$

$$-\alpha L \langle G_{\alpha}(x_{k}), x_{k} - x_{\star} \rangle + \frac{\alpha^{2} L}{2} \|G_{\alpha}(x_{k})\|^{2}$$

$$\leq f(x_{k+1}) - f(x_{\star}) - \frac{k}{2L} \|G_{\alpha}(x_{k})\|^{2} - \langle G_{\alpha}(x_{k}), x_{k} - x_{\star} \rangle + \frac{1}{2L} \|G_{\alpha}(x_{k})\|^{2}$$

$$\leq -\frac{1}{2L} \|G_{\alpha}(x_k)\|^2 - \frac{k}{2L} \|G_{\alpha}(x_k)\|^2 + \frac{1}{2L} \|G_{\alpha}(x_k)\|^2 = -\frac{k}{2L} \|G_{\alpha}(x_k)\|^2 \leq 0,$$

where the first inequality follows from the descent lemma

$$kf(x_{k+1}) \le kf(x_k) - \frac{k}{2L} ||G_{\alpha}(x_k)||^2$$

and the second inequality also follows from the descent lemma

$$f(x_{k+1}) - f(x_{\star}) - \langle G_{\alpha}(x_k), x_k - x_{\star} \rangle \le -\frac{1}{2L} \|G_{\alpha}(x_k)\|^2.$$

Projected gradient method