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Gradient descent

Consider the optimization problem

minimize
x∈Rn

f(x),

where f : Rn → R is differentiable.1

Gradient descent (GD) has the form

xk+1 = xk − αk∇f(xk)

for k = 0, 1, . . . , where x0 ∈ Rn is a suitably chosen starting point and
α0, α1, . . . ∈ R is a positive step size sequence.

Under suitable conditions, we hope xk
?→ x⋆ for some solution x⋆.

1If f is not differentiable, then gradient descent is not well defined, right?



Local vs. global minima

x⋆ is a local minimum if f(x) ≥ f(x⋆) within a small neighborhood.2

x⋆ is a global minimum if f(x) ≥ f(x⋆) for all x ∈ Rn

In the worst case, finding the global minimum of an optimization problem
is difficult. (The class of non-convex optimization problems is NP-hard.)

f(x)

local min global min

2if ∃ r > 0 s.t. ∀x s.t. ∥x− x⋆∥ ≤ r ⇒ f(x) ≥ f(x⋆)
3



What can we prove?

Without further assumptions, there is no hope of showing that GD finds
the global minimum since GD can never “know” if it is stuck in a local
minimum.

We cannot prove the function value converges to the global optimum.
We instead prove ∇f(xk)→ 0. Roughly speaking, this is similar but
weaker than proving that xk converges to a local minimum.3

3Without further assumptions, we cannot show that xk converges to a limit, and
even xk does converge to a limit, we cannot guarantee that that limit is not a saddle
point or even a local maximum. Nevertheless, people commonly use the argument
that xk “usually” converges and that it is “unlikely” that the limit is a local maximum
or a saddle point. More on this later.
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−∇f is steepest descent direction

From vector calculus, we know that ∇f is the steepest ascent direction,
so −∇f is the steepest descent direction. In other words,

xk+1 = xk − αk∇f(xk)

is moving in the steepest descent direction, which is −∇f(xk) at the
current position xk, scaled by αk > 0.

Taylor expansion of f about xk

f(x) = f(xk) + ⟨∇f(xk), x− xk⟩+O
(
∥x− xk∥2

)
.

Plugging in xk+1

f(xk+1) = f(xk)− αk∥∇f(xk)∥2 +O(α2
k).

For small (cautious) αk, a GD step reduces function value.
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Is GD a “descent method”?

xk+1 = xk − αk∇f(xk)

Without further assumptions, −∇f(xk)
only provides directional information. How
far should you go? How large should αk be?

A step of GD need not result in descent,
i.e., f(xk+1) > f(xk) is possible.

Calculus only guarantees the accuracy of
the Taylor expansion in an infinitesimal
neighborhood.

f(x)

xk

f(xk) + f ′(xk)(x− xk)
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Step size selection for GD

How do we choose the step size αk and ensure convergence?

We consider 3 solutions:

▶ Make an assumption allowing us to choose αk and ensures f(xk)
will descend.

– Estimate the L needed to choose αk.

▶ Do a line search to ensure that f(xk) will descend.

▶ Drop the insistence that f(xk) must consistently go down.
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GD for smooth non-convex functions

Consider the optimization problem

minimize
x∈Rn

f(x),

where f : Rn → R is “L-smooth” (but not necessarily convex).

We consider GD with constant step size:

xk+1 = xk − α∇f(xk).

(So α = α0 = α1 = · · · .)

We will show the following.

Theorem.
Assume f : Rn → R is L-smooth and inf f > −∞. Let α ∈ (0, 2/L).
Then, the GD iterates satisfy ∇f(xk)→ 0.

Smooth non-convex GD 9



L-smoothness

For L > 0, we say f : Rn → R is L-smooth if f is differentiable and

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn.

I.e., ∇f : Rn → Rn is L-Lipschitz continuous. We say f is smooth if it is
L-smooth for some L > 0.

Interpretation 1: ∇f does not change too rapidly. This makes the
first-order Taylor expansion reliable beyond an infinitesimal neighborhood.
(Further quantified on next slide.)

If f twice-continuously differentiable, then L-smoothness is equivalent to

−L ≤ λmin(∇2f(x)) ≤ λmax(∇2f(x)) ≤ L, ∀x ∈ Rn.

Interpretation 2: The curvature f , quantified by ∇2f , has lower and
upper bounds ±L.

The name “smoothness”, as used in optimization, is somewhat confusing because
in other areas of mathematics, “smoothness” often refers to infinite differentiability.



Smoothness ⇒ first-order Taylor has small remainder

For GD to work with a fixed non-adaptive step size, we need assurance
that the first-order Taylor expansion is a good approximation within a
sufficiently large neighborhood. L-smoothness provides this assurance.

Lemma.
Let f : Rn → R be L-smooth. Then∣∣f(x+ δ)−

(
f(x) + ⟨∇f(x), δ⟩

)∣∣ ≤ L

2
∥δ∥2, ∀x, δ ∈ Rn.

Note
R1(δ;x) = f(x+ δ)−

(
f(x) + ⟨∇f(x), δ⟩

)
is the remainder between f and its first-order Taylor expansion about x.
This lemma provides a quantitative bound |R1(δ;x)| ≤ O(∥δ∥2).
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L-smoothness lower and upper bounds

The claimed inequality∣∣f(x+ δ)−
(
f(x) + ⟨∇f(x), δ⟩

)∣∣ ≤ L

2
∥δ∥2

is equivalent to

f(x) + ⟨∇f(x), δ⟩ − L

2
∥δ∥2 ≤ f(x+ δ) ≤ f(x) + ⟨∇f(x), δ⟩+ L

2
∥δ∥2.

We will only prove the upper bound ≤. The lower bound ≤ follows from
the same reasoning with some sign changes. (Also, we only use ≤.)
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Proof of the upper bound ≤. Define g : R→ R by

g(t) = f(x+ t δ).

Then g is differentiable, and its derivative is

g′(t) = ⟨∇f(x+ t δ), δ⟩.

Next, observe that g′ is (L∥δ∥2)-Lipschitz continuous. Indeed,

|g′(t1)− g′(t0)| =
∣∣⟨∇f(x+ t1 δ)−∇f(x+ t0 δ), δ⟩

∣∣
≤

∥∥∇f(x+ t1 δ)−∇f(x+ t0 δ)
∥∥∥δ∥ ≤ L∥δ∥2|t1 − t0|.

Finally, we conclude that

f(x+ δ) = g(1) = g(0) +

∫ 1

0

g′(t) dt

≤ f(x) +

∫ 1

0

(
g′(0) + L∥δ∥2t

)
dt

= f(x) + ⟨∇f(x), δ⟩+ L

2
∥δ∥2.
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Summability lemma

Lemma.
Let V0, V1, . . . ∈ R and S0, S1, . . . ∈ R be nonnegative sequences
satisfying

Vk+1 ≤ Vk − Sk

for k = 0, 1, . . . . Then Sk → 0.

Key idea. Sk measures progress (decrease) made in iteration k. Since
Vk ≥ 0, Vk cannot decrease forever, so the progress (magnitude of Sk)
must diminish to 0.

Proof. Sum the inequality from i = 0 to k

Vk+1 +

k∑
i=0

Si ≤ V0.

Let k →∞ ∞∑
i=0

Si ≤ V0 − lim
k→∞

Vk ≤ V0

Since
∑∞

i=0 Si <∞, we conclude Si → 0.



Convergence proof for smooth non-convex functions

Theorem.
Assume f : Rn → R is L-smooth and inf f > −∞. Let α ∈ (0, 2/L).
Then, the GD iterates satisfy ∇f(xk)→ 0.

Proof. Use the Lipschitz gradient lemma with x = xk and
δ = −α∇f(xk) to obtain

f(xk+1) ≤ f(xk)− α
(
1− αL

2

)
∥∇f(xk)∥2,

and

def
= Vk+1︷ ︸︸ ︷(

f(xk+1)− inf
x

f(x)
)
≤

def
= Vk︷ ︸︸ ︷(

f(xk) − inf
x

f(x)
)
−

def
= Sk︷ ︸︸ ︷

α
(
1− αL

2

)︸ ︷︷ ︸
>0

for α∈(0,2/L)

∥∇f(xk)∥2 .

By the summability lemma, we have ∥∇f(xk)∥2 → 0 and thus
∇f(xk)→ 0.
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GD experiments and curvature
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GD with line search
Consider

minimize
x∈Rn

f(x),

where f : Rn → R is differentiable but not necessarily smooth.

GD with exact line search

gk = ∇f(xk)

αk ∈ argmin
α∈R

f(xk − αgk)

xk+1 = xk − αk∇f(xk)

performs a one-dimensional search in the direction of the gradient.

Theorem.
Let f : Rn → R be differentiable. Then GD with exact line search satisfies

f(xk)↘ f∞ ∈ [−∞,∞).

Proof. By construction, we have f(xk+1) ≤ f(xk). A non-increasing
sequence of real numbers converges to a value in [−∞,∞).



GD with inexact line search

Computing the exact line search is often expensive and unnecessary.
GD with inexact line search

gk = ∇f(xk)

αk = InexLineSearch(f, xk, gk)

xk+1 = xk − αk∇f(xk)

InexLineSearch(f, x, g) :

α← β // some initial constant > 0

if g == 0 : return α

while f(x− αg) ≥ f(x)

α← α/2

return α

This inexact line search is also called a backtracking line search.

Theorem.
If f is differentiable, the line search terminates in finite steps.

Proof. Since f is differentiable,

f(x− αg) = f(x)− α∥g∥2 + o(α)

and there is a threshold A > 0 such that f(x− αg) < f(x) for
α ∈ (0, A). The halving process of α eventually results in
f(x− αg) < f(x) (by coincidence) or enters the interval α ∈ (0, A).



GD with inexact line search

The starting step size β > 0 is a parameter to be tuned.

With large β, we have to perform the backtracking loop many times, but
we have the opportunity to take a long step.

With small β, the backtracking loop may terminate more quickly, but we
won’t take steps larger than β.

One can modify the algorithm to adaptively decrease or increase β based
on the history of backtracking.
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How to choose the starting point x0

Most (if not all) optimization algorithms require a starting point x0. It is
optimal to choose x0 to be close (or equal to) x⋆, but, of course, we
don’t know where x⋆ is.

If one has an estimate of x⋆ based on problem structure, should utilize it.

In convex optimization problems, we often have convergence to the
global minimum regardless of x0, so it is okay to choose x0 = 0.

For non-convex optimization problems, the general prescription is to start
with x0 = random noise.

In some non-convex optimization problems (such as training deep neural
networks), one must not use x0 = 0, and a well-tuned random
initialization is crucial.
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Convex optimization

The problem
minimize

x∈Rn
f(x)

is a convex optimization problem if f : Rn → R is convex, i.e., if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x, y ∈ Rn, θ ∈ [0, 1].

Finding the global minimum of a convex function is tractable.

“In fact, the great watershed in optimization isn’t between lin-
earity and nonlinearity, but convexity and nonconvexity.”
— R. Tyrrell Rockafellar, in SIAM Review, 1993

(In other areas of mathematics, linear things tend to be easier, while
nonlinear things tend to be significantly harder, but not in optimization.)
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−∇f points toward x⋆

Why can GD find global minimizers of convex functions?

Reason 1. Moving in the −∇f direction reduces the function value,
taking you to a local minimum, which is a global minimum by convexity.

Reason 2. The −∇f direction points toward global minimizers.
(This is the more fundamental reason.)

Theorem. x⋆

−∇f(x)

< 90◦
x

Let f : Rn → R be differentiable and convex.
Assume f has a minimizer and let x⋆ ∈ argmin f .
Let x ∈ Rn such that ∇f(x) ̸= 0. Then,

⟨x⋆ − x,−∇f(x)⟩ > 0.
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−∇f points toward x⋆

Theorem.
Let f : Rn → R be differentiable and convex. Assume f has a minimizer
and let x⋆ ∈ argmin f . Let x ∈ Rn such that ∇f(x) ̸= 0. Then,

⟨x⋆ − x,−∇f(x)⟩ > 0.

Proof. Note that x is not a local or global minimizer since ∇f(x) ̸= 0.
So, f(x)− f(x⋆) > 0. By the convexity inequality, we conclude

⟨x⋆ − x,−∇f(x)⟩ ≥ f(x)− f(x⋆) > 0.

Consequence: For small αk, a GD step reduces the distance to a solution.

∥xk − αk∇f(xk)︸ ︷︷ ︸
=xk+1

−x⋆∥2 = ∥xk − x⋆∥2 − 2αk ⟨xk − x⋆,∇f(xk)⟩︸ ︷︷ ︸
>0

+α2
k∥∇f(xk)∥2

< ∥xk − x⋆∥2

for sufficiently small αk > 0, if ∇f(xk) ̸= 0.
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Convergence of GD for smooth convex functions

We quickly establish an inequality we need for the subsequent proof.

Lemma.
Let f : Rn → R be L-smooth and convex. Let x⋆ ∈ argmin f be a
minimizer. Then

⟨∇f(x), x− x⋆⟩ ≥
1

L
∥∇f(x)∥2

Proof. Note, ∇f(x⋆) = 0. By the cocoercivity inequality, we have

f(x⋆) ≥ f(x) + ⟨∇f(x), x⋆ − x⟩+ 1

2L
∥∇f(x)∥2

and

f(x) ≥ f(x⋆) +
1

2L
∥∇f(x)∥2.

Adding these two inequalities yield the stated result.
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Convergence of GD for smooth convex functions

Theorem.
Let f : Rn → R be L-smooth and convex. Assume f has a minimizer.
Then GD with constant stepsize α satisfying α ∈ (0, 2/L) converges in
the sense of xk → x⋆ for some x⋆ ∈ argmin f .

Proof. Let x̃⋆ ∈ argmin f . Using the cocoercivity inequality,

∥xk+1 − x̃⋆∥2 = ∥xk − x̃⋆ − α∇f(xk)∥2

= ∥xk − x̃⋆∥2 − 2α⟨∇f(xk), xk − x̃⋆⟩+ α2∥∇f(xk)∥2

≤ ∥xk − x̃⋆∥2 − 2α
L ∥∇f(xk)∥2 + α2∥∇f(xk)∥2

= ∥xk − x̃⋆∥2 − α
(
2
L − α

)︸ ︷︷ ︸
>0

∥∇f(xk)∥2.

By the summability lemma, ∇f(xk)→ 0.
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Convergence of GD for smooth convex functions

The proof of xk → x⋆ for some x⋆ ∈ argmin f is analysis-heavy, and it
somewhat exceeds the scope of this class. Nevertheless, we show it for
the sake of completeness.

By,
∥xk+1 − x̃⋆∥2 ≤ ∥xk − x̃⋆∥2 (1)

∥xk − x̃⋆∥2 is a decreasing sequence and thus has a limit, but the limit is
not necessarily 0 (especially if the minimizer is not unique). We argue
that xk → x⋆ for some x⋆ ∈ argmin f with the steps: (i) xk has an
accumulation point (ii) this accumulation point is a minimizer (iii) this is
the only accumulation point.

(i) Inequality (1) tells us {xk}k lie within {x | ∥x− x̃⋆∥ ≤ ∥x0 − x̃⋆∥}, a
compact set, so {xk}k has an accumulation point x⋆.

(ii) Accumulation point x⋆ satisfies ∇f(x⋆) = 0, as ∇f(xk)→ and ∇f
is continuous, i.e., x⋆ ∈ argmin f .

(iii) Apply (1) to this accumulation point x⋆ ∈ argmin f (i.e., plug in
x̃⋆ = x⋆) to conclude ∥xk − x⋆∥ monotonically decreases to 0, i.e.,
the entire sequence converges to x⋆.



Convergence of GD for smooth convex functions

Note, xk → x⋆ immediately implies f(xk)→ f(x⋆) and ∇f(xk)→ 0.
(L-smoothness implies f and ∇f are continuous.)

As we show next, we can establish a rate (speed) guarantee on
f(xk)→ f(x⋆). Namely, we will show

f(xk)− f(x⋆) ≤ O(1/k).

It is also possible to establish a rate guarantee on ∇f(xk)→ 0. It can be
shown that

∥∇f(xk)∥ ≤ O(1/k).
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Convergence rate of GD for smooth convex functions

Theorem.
Let f : Rn → R be L-smooth and convex. Assume f has a minimizer x⋆.
Consider gradient descent with constant stepsize α = 1/L. Then, for
k = 1, 2, . . . ,

f(xk)− f(x⋆) ≤
L

2k
∥x0 − x⋆∥2.

Outline of proof. This proof technique is called an energy function
analysis, potential function analysis, or Lyapunov analysis. The key
insight is to define an appropriate dissipative (non-increasing) quantity.

The main challenge is in identifying the right energy function, which in
some cases is highly non-obvious. (The “energy functions” are often
unrelated to any notion of physical energy.)
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Proof. Define the energy function

Ek = k
(
f(xk)− f(x⋆)

)
+

L

2
∥xk − x⋆∥2

for k = 0, 1, . . . . If the energy is dissipative, then we conclude

k(f(xk)− f(x⋆)) ≤ Ek ≤ · · · ≤ E0 =
L

2
∥x0 − x⋆∥2.

It remains to show Ek+1 ≤ Ek for k = 0, 1, . . . . We have

Ek+1 − Ek = (k + 1)
(
f(xk+1)− f(x⋆)

)
− k

(
f(xk)− f(x⋆)

)
− αL⟨∇f(xk), xk − x⋆⟩+

α2L

2
∥∇f(xk)∥2

≤ f(xk)− f(x⋆)−
k + 1

2L
∥∇f(xk)∥2 − ⟨∇f(xk), xk − x⋆⟩+

1

2L
∥∇f(xk)∥2

≤ − 1

2L
∥∇f(xk)∥2 −

k + 1

2L
∥∇f(xk)∥2 +

1

2L
∥∇f(xk)∥2 = − k

2L
∥∇f(xk)∥2 ≤ 0,

where the first inequality follows from the L-smoothness lemma

(k+1)f(xk+1) = (k+1)f
(
xk− 1

L∇f(xk)
)
≤ (k+1)f(xk)−

(k + 1)

2L
∥∇f(xk)∥2

and the second inequality follows from the cocoercivity inequality

f(xk)− f(x⋆)− ⟨∇f(xk), xk − x⋆⟩ ≤ −
1

2L
∥∇f(xk)∥2.
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Projected gradient descent

Constrained optimization problem

minimize
x∈Rn

f(x),

subject to x ∈ C,

where C ⊂ Rn is a nonempty closed convex set and f : Rn → R is
differentiable. Assume the constraint set C is computationally easy to
project onto.

Projected gradient descent has the form

xk+1 = ΠC

(
xk − α∇f(xk)

)
for k = 0, 1, . . . , where x0 ∈ Rn is a suitably chosen starting point and
α ∈ R is a positive step size.

In other words, projected GD alternates gradient descent steps and
projections onto C.
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Example: Projection onto ℓ∞-ball

Consider the ℓ∞-ball

C = {x ∈ Rn | ∥x∥∞ ≤ 1} = {x ∈ Rn | |xi| ≤ 1, for i = 1, . . . , n}.

Then, ΠC is the thresholding operator

(
ΠC(x)

)
i
= Π[−1,1](xi) =

 −1 if xi < −1
xi if − 1 ≤ xi ≤ 1
+1 if 1 < xi

applied element-wise for i = 1, . . . , n.

Since projected GD uses ΠC every iteration, it is important that
computing ΠC is inexpensive.

(It’s also nice for humans if the code for ΠC is easy to implement.)
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Example: ℓ∞-constrained logistic regression

Consider the ℓ∞-constrained logistic regression problem

minimize
x∈Rn

N∑
i=1

log
(
1 + exp(v⊺i x)

)
subject to ∥x∥∞ ≤ 1

for some v1, . . . , vN ∈ R.

Projected GD is

xk+1 = Π
(
xk − α

N∑
i=1

1

1 + exp(−v⊺i xk)
vi

)
,

where Π is the element-wise projection onto [−1, 1].

This is quite simple to implement.
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Optimality condition for constrained optimization

Recall that in unconstrained optimization, ∇f(x) = 0 is a necessary
condition for x to be a solution. This is called an optimality condition.
We have an analogous optimality condition for constrained optimization.

Theorem.
Let C ⊂ Rn be a nonempty closed convex set and f : Rn → R be
differentiable. If x⋆ ∈ argminx∈C f(x), then

⟨∇f(x⋆), x− x⋆⟩ ≥ 0, ∀x ∈ C.

Motivation. Imagine we are minimizing a linear objective subject to a
constraint:

minimize
x∈Rn

⟨g, x⟩
subject to x ∈ C.

Then, x⋆ being a solution is defined as

⟨g, x⟩ ≥ ⟨g, x⋆⟩, ∀x ∈ C.

When f is not linear, we expect something similar within a neighborhood.
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Optimality condition for constrained optimization

Theorem.
Let C ⊂ Rn be nonempty closed convex and f : Rn → R be
differentiable. If x⋆ ∈ argminx∈C f(x), then

⟨∇f(x⋆), x− x⋆⟩ ≥ 0, ∀x ∈ C.
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Optimality condition for constrained optimization

Theorem.
Let C ⊂ Rn be nonempty closed convex and f : Rn → R be
differentiable. If x⋆ ∈ argminx∈C f(x), then

⟨∇f(x⋆), x− x⋆⟩ ≥ 0, ∀x ∈ C.

Proof. Let x ∈ C. If x = x⋆, there is nothing to prove, so assume
x ̸= x⋆. Then,

f(x⋆) ≤ f
(
x⋆ + θ(x− x⋆)︸ ︷︷ ︸
=(1−θ)x⋆+θx∈C

)
∀ θ ∈ (0, 1].

and

0 ≤ lim
θ→0

f(x⋆ + θ(x− x⋆))− f(x⋆)

θ
= ⟨∇f(x⋆), x− x⋆⟩.
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Optimality condition for constrained optimization

For unconstrained convex optimization, ∇f(x) = 0 is a necessary
and sufficient condition for optimality. The same pattern holds for
constrained convex optimization.

Theorem.
Let C ⊂ Rn be nonempty closed convex and f : Rn → R be differentiable
and convex. Then, x⋆ ∈ argminx∈C f(x) if and only if

⟨∇f(x⋆), x− x⋆⟩ ≥ 0, ∀x ∈ C.
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Optimality condition for constrained optimization

Theorem.
Let C ⊂ Rn be nonempty closed convex and f : Rn → R be differentiable
and convex. Then, x⋆ ∈ argminx∈C f(x) if and only if

⟨∇f(x⋆), x− x⋆⟩ ≥ 0, ∀x ∈ C.

Proof. It remains to show the direction (⇐) under the assumption of
convexity. Assume

⟨∇f(x⋆), x− x⋆⟩ ≥ 0, ∀x ∈ C.

By the convexity inequality,

f(x) ≥ f(x⋆) + ⟨∇f(x⋆), x− x⋆⟩
≥ f(x⋆),

and we conclude x⋆ is a global minimizer.
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Optimality ⇔ stationarity

Theorem.
Let C ⊂ Rn be nonempty closed convex and f : Rn → R be differentiable
and convex. Let α > 0. Then, x⋆ ∈ argminx∈C f(x) if and only if

x⋆ = ΠC(x⋆ − α∇f(x⋆)).

I.e., projected GD stops moving if and only if you are at a solution.

Proof. By the optimality condition, x⋆ is a solution if and only if

⟨∇f(x⋆), x− x⋆⟩ ≥ 0, ∀x ∈ C.

This holds if and only if

⟨x− x⋆, x⋆ − α∇f(x⋆)− x⋆⟩ ≤ 0, ∀x ∈ C.

By the projection theorem, this holds if and only if

x⋆ = ΠC(x⋆ − α∇f(x⋆)).
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G-mapping

Let α > 0. Let C ⊂ Rn be nonempty closed convex and f : Rn → R be
differentiable. Define Gα : Rn → R such that

ΠC(x− α∇f(x)) = x− αGα(x).

In other words, let

Gα(x) =
1

α

(
x−ΠC(x− α∇f(x))

)
.

With this notation, we can express projected GD as

xk+1 = xk − αGα(xk).

We will call Gα the G-mapping. In other references, this is called the
“gradient mapping,” but I dislike this terminology because Gα is not a
gradient, although it is a generalization of the gradient.

Note, if C = Rn, then ΠC(x) = x and Gα = ∇f .
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Descent lemma

First, an intermediate inequality, a consequence of the projection theorem.

Lemma.
Let f : Rn → R be L-smooth and convex. Let C ⊂ Rn be nonempty
closed convex. Let α > 0 and x+ = x− αGα(x). Then

⟨∇f(x), y − x+⟩ ≥ ⟨Gα(x), y − x+⟩.

for any x ∈ Rn and y ∈ C.

Proof. By the projection theorem,

⟨y − x+, x− α∇f(x)− (x− αGα(x))︸ ︷︷ ︸
=x+

⟩ ≤ 0.

Reorganizing the terms, we get

⟨y − x+,∇f(x)−Gα(x)⟩ ≥ 0.

Further reorganizing, we get the stated result.
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Descent lemma

Next, we establish our main descent lemma used for the convergence
proof of projected GD.

Lemma.
Let f : Rn → R be L-smooth and convex. Let C ⊂ Rn be nonempty
closed convex. If α ∈ (0, 1/L], then

f(y) ≥ f(x− αGα(x)︸ ︷︷ ︸
=x+

) + ⟨Gα(x), y − x⟩+ α

2
∥Gα(x)∥2

for any x ∈ Rn and y ∈ C.

This lemma resembles the cocoercivity inequality, but it is not a strict
generalization. (When C = Rn and Gα(x) = ∇f(x), the resulting
inequality is weaker than the cocoercivity inequality.)
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f(y) ≥ f(x+) + ⟨Gα(x), y − x⟩+ α

2
∥Gα(x)∥2

Proof. By the L-smoothness lemma, convexity of f , and consequence of
the projection theorem, we have

f(x+) ≤ f(x) + ⟨∇f(x), x+ − x⟩+ L

2
∥x+ − x∥2

≤ f(x) + ⟨∇f(x), x+ − x⟩+ 1

2α
∥x+ − x∥2

= f(x) + ⟨∇f(x), y − x⟩+ ⟨∇f(x), x+ − y⟩+ α

2
∥Gα(x)∥2

≤ f(y) − ⟨∇f(x), y − x+⟩+
α

2
∥Gα(x)∥2

≤ f(y) − ⟨Gα(x), y − x+⟩+
α

2
∥Gα(x)∥2

= f(y)− ⟨Gα(x), y − x⟩ − ⟨Gα(x), x− x+︸ ︷︷ ︸
=αGα(x)

⟩+ α

2
∥Gα(x)∥2

= f(y)− ⟨Gα(x), y − x⟩ − α

2
∥Gα(x)∥2.

Reorganizing, we get the stated result.



Bounty!

In my view, the proofs for the cocoercivity inequality and this descent
lemma are opaque.

If you can find a a substantively simpler or intuitive proof for these
inequalities, I will add +20 points (out of 100 points) on the final exam.
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Descent lemma

Plugging α = 1/L, y = xk+1, and x = xk into the lemma to get

f(xk+1) ≤ f(xk)−
1

2L
∥Gα(xk)∥2.

This is a guarantee on the improvement from xk to xk+1; the
improvement will be proportional to the squared magnitude of the
movement.

By L-smoothness, the mapping

xk 7→ xk − α∇f(xk)

will reduce the function value, but the projection step

xk − α∇f(xk) 7→ ΠC(xk − α∇f(xk)) = xk+1

can and often will increase the function value. The descent property
above assures us that the decrease and increase add up to a decrease.
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Convergence of projected GD

Theorem.
Let C ⊂ Rn be nonempty closed convex and f : Rn → R be L-smooth
and convex. Assume argminx∈C f(x) has a solution. Then projected GD
with constant stepsize α satisfying α ∈ (0, 1/L] converges in the sense of
xk → x⋆ for some x⋆ ∈ argminx∈C f(x).4

Proof. Let x̃⋆ ∈ argmin f and f⋆ = f(x̃⋆). Using the descent lemma,

∥xk+1 − x̃⋆∥2

= ∥xk − αGα(xk)− x̃⋆∥2

= ∥xk − x̃⋆∥2 − 2α⟨Gα(xk), xk − x̃⋆⟩+ α2∥Gα(xk)∥2

≤ ∥xk − x̃⋆∥2 − 2α
(
f(xk+1)− f⋆

)
− α

L∥Gα(xk)∥2 + α2∥Gα(xk)∥2

= ∥xk − x̃⋆∥2 − 2α
(
f(xk+1)− f⋆

)
− α

(
1
L − α

)︸ ︷︷ ︸
≥0

∥Gα(xk)∥2

≤ ∥xk − x̃⋆∥2 − 2α
(
f(xk+1)− f⋆

)
By the summability lemma, f(xk)→ f⋆. With a subsequence argument,
we can show xk → x⋆.

4It is possible to show convergence for α ∈ (0, 2/L) with more work.



Convergence rate of projected GD

Theorem.
Let C ⊂ Rn be nonempty closed convex and f : Rn → R be L-smooth
and convex. Assume argminx∈C f(x) has a solution. Consider projected
gradient descent with constant stepsize α = 1/L. Then, for k = 1, 2, . . . ,

f(xk)− f(x⋆) ≤
L

2k
∥x0 − x⋆∥2.

Proof. Define the energy function

Ek = k
(
f(xk)− f(x⋆)

)
+

L

2
∥xk − x⋆∥2

for k = 0, 1, . . . . If the energy is dissipative, then we conclude

k(f(xk)− f(x⋆)) ≤ Ek ≤ · · · ≤ E0 =
L

2
∥x0 − x⋆∥2.
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Convergence rate of projected GD

Ek = k
(
f(xk)− f(x⋆)

)
+

L

2
∥xk − x⋆∥2

It remains to show Ek+1 ≤ Ek for k = 0, 1, . . . . We have

Ek+1 − Ek = (k + 1)
(
f(xk+1)− f(x⋆)

)
− k

(
f(xk)− f(x⋆)

)
− αL⟨Gα(xk), xk − x⋆⟩+

α2L

2
∥Gα(xk)∥2

≤ f(xk+1)− f(x⋆)−
k

2L
∥Gα(xk)∥2 − ⟨Gα(xk), xk − x⋆⟩+

1

2L
∥Gα(xk)∥2

≤ − 1

2L
∥Gα(xk)∥2 −

k

2L
∥Gα(xk)∥2 +

1

2L
∥Gα(xk)∥2 = − k

2L
∥Gα(xk)∥2 ≤ 0,

where the first inequality follows from the descent lemma

kf(xk+1) ≤ kf(xk)−
k

2L
∥Gα(xk)∥2

and the second inequality also follows from the descent lemma

f(xk+1)− f(x⋆)− ⟨Gα(xk), xk − x⋆⟩ ≤ −
1

2L
∥Gα(xk)∥2.
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